Оставаться стройной после 40: вопросы стратегии и тактики
Простейший рецепт бананового пирога
Цветометрия
- Фитнес и бодибилдинг
НАУЧНЫЕ ВИРУСОЛОГИЧЕСКИЕ УЧРЕЖДЕНИЯ В СССР
Первые вирусологические лаборатории в СССР созданы в 30-е годы: в .— лаборатория по изучению вирусов растений в Украинском институте защиты растений, в .— отдел вирусов в Институте микробиологии АН СССР, а в . он был реорганизован в отдел вирусов растений, которым в течение многих лет руководил В. Л. Рыжков. В . организована Центральная вирусологическая лаборатория Наркомздрава РСФСР в Москве, которой заведовал Л. А. Зильбер, а в . эта лаборатория реорганизована в отдел вирусов Всесоюзного института экспериментальной медицины, его руководителем был назначен А. А. Смородинцев. В . на базе отдела вирусов создан Институт вирусологии АМН СССР, которому в . присвоено имя Д. И. Ивановского.
В течение 50-х и 60-х годов созданы научные и производственные вирусологические учреждения в нашей стране: Институт полиомиелита и вирусных энцефалитов АМН СССР, Институт вирусных препаратов Министерства здравоохранения СССР, Киевский институт инфекционных болезней, Всесоюзный научно-исследовательский институт гриппа Министерства здравоохранения СССР в Ленинграде и ряд других.
Важную роль в подготовке кадров вирусологов сыграла организация в . кафедры вирусологии в Центральном институте усовершенствования врачей МЗ СССР. Кафедры вирусологии были созданы на биологических факультетах Московского и Киевского университетов.
НАУЧНЫЕ ВИРУСОЛОГИЧЕСКИЕ УЧРЕЖДЕНИЯ В СССР
Первые вирусологические лаборатории в СССР созданы в 30-е годы: в .— лаборатория по изучению вирусов растений в Украинском институте защиты растений, в .— отдел вирусов в Институте микробиологии АН СССР, а в . он был реорганизован в отдел вирусов растений, которым в течение многих лет руководил В. Л. Рыжков. В . организована Центральная вирусологическая лаборатория Наркомздрава РСФСР в Москве, которой заведовал Л. А. Зильбер, а в . эта лаборатория реорганизована в отдел вирусов Всесоюзного института экспериментальной медицины, его руководителем был назначен А. А. Смородинцев. В . на базе отдела вирусов создан Институт вирусологии АМН СССР, которому в . присвоено имя Д. И. Ивановского.
В течение 50-х и 60-х годов созданы научные и производственные вирусологические учреждения в нашей стране: Институт полиомиелита и вирусных энцефалитов АМН СССР, Институт вирусных препаратов Министерства здравоохранения СССР, Киевский институт инфекционных болезней, Всесоюзный научно-исследовательский институт гриппа Министерства здравоохранения СССР в Ленинграде и ряд других.
Важную роль в подготовке кадров вирусологов сыграла организация в . кафедры вирусологии в Центральном институте усовершенствования врачей МЗ СССР. Кафедры вирусологии были созданы на биологических факультетах Московского и Киевского университетов.
ТРАНСЛЯЦИЯ
Синтез белка в клетке происходит в результате трансляции иРНК. Трансляцией называется процесс перевода генетической информации, содержащейся в иРНК, на специфическую последовательность аминокислот. Иными словами, в процессе трансляции осуществляется перевод 4-буквенного языка азотистых оснований на 20-буквенный язык аминокислот.
Транспортные РНК. Свою аминокислоту тРНК узнают по конфигурации ее боковой цепи, а специфический фермент аминоацил-синтетаза катализирует ассоциацию тРНК с аминокислотой. В клетке существует большое количество разнообразных видов тРНК. Поскольку для каждой аминокислоты должна быть своя тРНК, количество видов тРНК должно быть не меньше 20, однако в клетке их значительно больше. Это связано с тем, что для каждой аминокислоты существует не один, а несколько видов тРНК. Молекула тРНК представляет собой однонитчатую РНК со сложной структурой в виде кленового листа (рис. 18). Один ее конец связывается с аминокислотой (конец а), а противоположный — с нуклеоти-дами иРНК, которым они комплементарны (конец б). Три нуклеотида на иРНК кодируют одну аминокислоту и называются «триплет» или «кодон», комплементарные кодону три нуклеотида на конце тРНК называются «антикодон».
Рибосомы. Синтез белка в клетке осуществляется на рибосоме. Рибосома состоит из двух субъединиц,
Рис. 18. Строение транспортной РНК. а — участок связывания с аминокислотой; б — участок связывания с нРНК (анти-кодон).
большой и малой, 'малая субъединица примерно в два раза меньше большой. Обе субъединицы содержат по одной молекуле рибосомальной РНК и ряд белков. Рибо-сомальные РНК синтезируются в ядре на матрице ДНК с помощью РНК-полимеразы I. В малой рибосомальной субъединице есть канал, в котором находится информационная РНК. В большой рибосомальной субъединице есть две полости, захватывающие также малую рибосо-мальную субъединицу. Одна из них содержит аминоациль-ный центр (А-центр), другая — пептидильный центр (П-центр) (рис. 19).
Фазы трансляции. Процесс трансляции состоит из трех фаз: 1) инициации, 2) элонгации и 3) терминации.
Инициация трансляции. Это наиболее ответственный этап в процессе трансляции, основанный на узнавании рибосомой иРНК и связывании с ее особыми участками. Рибосома узнает иРНК благодаря «шапочке» на 5'-конце и скользит к 3'-концу, пока не достигнет инициаторного кодона, с которого начинается трансляция. В эукариотической клетке инициаторным кодоном является кодон АУГ или ГУГ, копирующие метионин. С метио-нина начинается синтез всех полипептидных цепей.
Вначале с иРНК связывается малая рибосомальная субъединица. К комплексу иРНК с малой рибосомальной субъединицей присоединяются другие компоненты, необходимые для начала трансляции. Это несколько молекул "ч=лка, которые называются «инициаторные факторы».
19. Формирование и функционирование рибосомы (схема). 1— малая рибосомальная субъединица с присоединенной инициаторной метионил-тРНК; 2— большая рибосомальная субъединица; 3— инициаторный комплекс, содержащий малую рибосомальную субъединицу, метионил-тРНК и иРНК; заштрихованные прямоугольники — белковые факторы инициации (9 факторов в эукариотических клетках); 4— функционально активная рибосома; А — аминоацильный центр, П— пептидильный центр в большой рибосомальной субъединице; 5, б, 7— процесс элонгации полипептидной цепи; показан перенос амииоацил-тРНК между двумя центрами на большой рибосомальной субъединице, осуществляемый с помощью пептидил-трансфера-зы.
Их по крайней мере три в прокариотической клетке и более девяти в эукариотической клетке. Инициаторные факторы определяют узнавание рибосомой специфических иРНК и, таким образом, являются определяющим фактором в дискриминации между различными ИРНК, присутствующими в клетке, как правило, в избыточном количестве.
В результате формируется комплекс, необходимый для инициации трансляции, который называется инициаторным комплексом. В инициаторный комплекс входят: 1) иРНК; 2) малая рибосомальная субъединица; 3) ами-ноацил-тРНК, несущая инициаторную аминокислоту; 4) инициаторные факторы; 5) несколько молекул ГТФ.
В рибосоме осуществляется слияние потока информации с потоком аминокислот. Аминоацил-тРНК входит в А-центр большой рибосомальной субъединицы, и ее антикодон взаимодействует с кодоном иРНК, находящейся в малой рибосомальной субъединице. При продвижении иРНК на один кодон тРНК перебрасывается в пептидильный центр, и ее аминокислота присоединяется к инициаторной аминокислоте с образованием первой пептидной связи. Свободная от аминокислоты тРНК выходит из рибосомы и может опять функционировать в транспорте специфических аминокислот. На ее место из А-центра в П-центр перебрасывается новая тРНК и образуется новая пептидная связь. В А-центре появляется вакантный кодон иРНК, к которому немедленно присоединяется
1— большая рибосомальная субъединица; 2— малая рибосомальная субъединица; 3— иРНК; 4— растущая полипептидная нить.
соответствующая тРНК и происходит присоединение новых аминокислот к растущей полипептидной цепи (см. рис. 19).
Элонгация трансляции. Это процесс удлинения, наращивания полипептидной цепи, основанный на присоединении новых аминокислот с помощью пептидной связи. Происходит постоянное протягивание нити иРНК через рибосому и. «декодирование» заложенной в ней генетической информации (рис. 20). иРНК функционирует на нескольких рибосомах, каждая из которых синтезирует одну и ту же полипептидную нить, кодируемую данной иРНК. Группа рибосом, работающих на одной молекуле иРНК, называется полирибосомой, или полисомой. Размер полисом значительно варьирует в зависимости от длины молекулы иРНК, а также от расстояния между рибосомами. Так, полисомы, которые синтезируют гемоглобин, состоят из 4—6 рибосом, высокомолекулярные белки синтезируются на полирибосомах, содержащих 20 и более рибосом.
Терминация трансляции. Терминация трансляции происходит в тот момент, когда рибосома доходит ' до терминирующего кодона в составе иРНК. Трансляция прекращается, и ' полипептидная цепь освобождается из полирибосомы. После окончания трансляции полирибосомы распадаются на субьединицы, которые могут войти в состав новых полирибосом.
Свойства полирибосом. По топографии в клетке полирибосомы делят на две большие группы — свободные и связанные с мембранами эндоплазматической сети, которые составляют соответственно 75 и 25%. Между двумя группами полирибосом нет принципиальных структурных и функциональных различий, они формируются из одного и того же пула субъединиц и в процессе трансляции могут обмениваться субъединицами. Мембраны, с
которыми связаны полирибосомы, называются грубыми или шероховатыми мембранами в отличие от гладких мембран, не содержащих полирибосомы. Связь полирибосом с мембранами осуществляется с помощью сигнального пептида — специфической последовательности на аминоконце синтезирующихся гликопротёидов. На связанных с мембранами полирибосомах синтезируются внутри-мембранные белки, которые сразу же после синтеза оказываются в составе мембран.
Трансляция в зараженных вирусом клетках. Стратегия вирусного генома, использующего клеточный аппарат трансляции, должна быть направлена на создание механизма для подавления трансляции собственных клеточных иРНК и для избирательной трансляции вирусных иРНК, которые всегда находятся в значительно меньшем количестве, чем клеточные матрицы. Этот механизм реализуется на уровне специфического узнавания малой рибосомальной субъединицей вирусных иРНК, т. е. на уровне формирования инициирующего комплекса. Поскольку многие вирусы не подавляют синтез клеточных иРНК, в зараженных клетках возникает парадоксальная ситуация: прекращается трансляция огромного фонда функционально активных клеточных иРНК, и на освободившихся рибосомах начинается трансляция одиночных молекул вирусных иРНК. Специфическое узнавание рибосомой вирусных иРНК осуществляется за счет вирусспецифических инициаторных факторов.
Два способа формирования вирусных белков. Поскольку геном вируса животных представлен молекулой, кодирующей более чем один белок, вирусы поставлены перед необходимостью синтеза либо , длинной иРНК, кодирующей один гигантский полипептид-предшественник, который затем должен быть нарезан в специфических точках на функционально активные белки, либо коротких моноцистронных иРНК, каждая из которых кодирует один белок. Таким образом, существуют два способа формирования вирусных белков: 1) иРНК транслируется в гигантский полипептид-предшественник, который после синтеза последовательно нарезается на зрелые функционально активные белки; 2) иРНК транслируется с образованием зрелых белков, или белков, которые лишь незначительно модифицируются после синтеза.
Первый способ трансляции характерен для РНК-со-держащих «плюс-нитевых» вирусов — пикорнавирусов и тогавирусов. Их иРНК транслируется в гигантскую поли-
[ пептидную цепь, так называемый полипротеид, который
сползает в виде непрерывной ленты с рибосомного «кон-) вейера» и нарезается на индивидуальные белки нужного
г размера. Нарезание вирусных белков является много-
< ступенчатым процессом, осуществляемым как вирусспеци-
фическими, так и клеточными протеазами. В клетках,зараженных пикорнавирусами, на конце полипротеина-предшественника находится белок с протеазной актив-|| ностью. Вирусная протеаза осуществляет нарезание
|| предшественника на 3 фрагмента, один из которых являет-
» ся предшественником для структурных белков, второй —
I для неструктурных белков, функции третьего фрагмента
I неизвестны. В дальнейшем нарезании участвуют вирус-
специфические и клеточные протеазы.| Интересный вариант первого способа трансляции
обнаруживается у альфа-вирусов (семейство тогавирусов).
I Геномная РНК с коэффициентом седиментации 42 8| транслируется с образованием полипептида-предшествен-1 ника для неструктурных белков. Однако доминирующей
в зараженных клетках иРНК является РНК с коэффи-[ циентом седиментации 26 8, составляющая одну треть
I геномной РНК. Эта иРНК транслируется с образованием
1Л предшественника для структурных белков.
' Второй способ формирования белков характерен
| для ДНК-содержащих вирусов и большинства РНК-
' содержащих вирусов. При этом способе синтезируются
короткие моноцистронные иРНК в результате избирательной транскрипции одного участка генома (гена).I Однако все вирусы широко используют механизм пост-
трансляционного нарезания белка.I Вирусспецифические полисомы. Поскольку длина ви-
русных иРНК варьирует в широких пределах, размервирусспецифических полисом также широко варьирует:( от 3—4 до нескольких десятков рибосом на одной нити
II иРНК. При инфекциях, вызванных пикорнавирусами,I формируются крупные полисомы, представляющие собой1 агрегаты, состоящие из 20—60 рибосом. При инфекциях,I вызванных другими вирусами животных, использующимиI второй способ трансляции, формируются полисомы не-I большого размера. Между размерами иРНК и величиной1 полисом существует определенная корреляция, однакоI в ряде случаев полисомы имеют больший или меньшийI размер по сравнению с ожидаемым. Эта особенностьI вирусных полисом объясняется необычным простран-1 ственным расположением рибосом на вирусных матрицах,
связанных с меньшей плотностью упаковки рибосом на молекуле иРНК.
Вирусспецифические полисомы могут быть как свободными, так и связанными с мембранами. В зараженных вирусом полиомиелита клетках полипротеид синтезируется на связанных с мембранами полисомах; при инфекциях, вызванных сложно устроенными вирусами, формируются как свободные, так и связанные с мембранами полисомы, которые вовлечены в синтез разных классов вирусных полипептидов. Внутренние белки обычно синтезируются на свободных полисомах, гликопротеиды всегда синтезируются на полисомах, связанных с мембранами.
Модификация вирусных белков. В эукариотической клетке многие белки, в том числе вирусные, подвергаются посттрансляционным модификациям, и зрелые функционально активные белки часто не идентичны их вновь синтезированным предшественникам. Широко распространены такие посттрансляционные ковалентные модификации, как гликозилирование, ацилирование, метилирование, сульфирование (образование дисульфидных связей), протеолитическое нарезание и, наконец, фосфорилирова-ние. В результате вместо 20 генетически закодированных аминокислот из различных клеток разных органов эукариотов выделено около 140 дериватов аминокислот.
Среди широкого спектра модифицированных реакций лишь небольшое количество процессов является обратимыми: 1) фосфорилирование-дефосфорилирование; 2) ацилирование-деацилирование; 3) метилирование-демети-лирование; 4) образование дисульфидных связей. Среди подобных обратимых модификаций белков следует искать процессы, обусловливающие механизм регуляции активности белков в эукариотической клетке.
Гликозилирование. В составе сложно устроенных РНК- и ДНК-содержащих вирусов имеются белки, содержащие ковалентно присоединенные боковые цепочки углеводов — гликопротеиды. Гликопротеиды расположены в составе вирусных оболочек и находятся на поверхности вирусных частиц. Своей гидрофобной частью они погружены в двойной слой липидов, а некоторые гликопротеиды проникают через него и взаимодействуют с внутренним компонентом вируса (рис. 21). Гидрофильная часть молекулы обращена наружу.
Синтез и „ внутриклеточный транспорт гликопротеидов характеризуется рядом особенностей, присущих клеточным внутримембранным белкам. Их синтез осуществ-
Рис. 21. Строение липопротеидной оболочки вируса Синдбис.
Е1, Е2, ЕЗ— молекулы вирусных гликопротеидов; К — капсидный белок; У —
углеводные цепочки; Л — липидный бислой.
ляется на полисомах, ассоциированных с мембранами, и белки сразу же после синтеза попадают в шероховатые мембраны, откуда транспортируются в мембраны эндоплаз-матической сети и в комплекс Гольджи, где происходит модификация и комплектование углеводной цепочки, а затем — в плазматическую мембрану в ряде случаев путем слияния с ней везикул комплекса Гольджи. Такой целенаправленный транспорт осуществляется благодаря имеющейся на аминоконце белка специфической последовательности из 20—30 аминокислот (сигнальному пептиду). Сигнальный пептид отрезается от белковой молекулы после того, как гликопротеид достигает плазматической мембраны.
' Гликозилирование полипептидов является сложным многоступенчатым процессом, первые этапы которого начинаются уже в процессе синтеза полипептидов, и первый сахар присоединяется к полипептидной цепи, еще не сошедшей с рибосомы. Последующие этапы гликози-лирования происходят путем последовательного присоединения Сахаров в виде блоков к углеводной цепочке в процессе транспорта полипептида к плазматической мембране. Окончательное формирование углеводной
цепочки может завершаться на плазматической мембране перед сборкой вирусной частицы. Процесс гликозилирова-ния не влияет на транспорт полипептида к плазматической мембране, но имеет существенное значение для экспрессии биологической активности белка. При подавлении гликозилирования соответствующими ингибиторами (аналоги Сахаров типа 2-дезоксиглюкозы, антибиотик туни-камицин) нарушается синтез полипептидов, блокируется сборка вирионов миксовирусов, рабдовирусов, альфа-вирусов или образуются неинфекционные вирионы герпеса и онковирусов.
Сульфирование. Некоторые белки сложно устроенных РНК- и ДНК-содержащих вирусов сульфируются после трансляции. Чаще всего сульфированию подвергаются гликопротеиды, при этом сульфатная группа связывается с сахарным компонентом гликопрбтеида.
Ацилирование. Ряд гликопротеидов сложно устроенных РНК-содержащих вирусов (НА2 вируса гриппа, белок О вируса везикулярного стоматита, белок НИ вируса ньюкаслской болезни и др.) содержат ковалентно связанные 1—2 молекулы жирных кислот.
Нарезание. Многие вирусные белки и в первую очередь гликопротеиды приобретают функциональную активность лишь после того, как произойдет их нарезание в специфических точках протеолитическими ферментами. Нарезание происходит либо с образованием двух функциональных белковых субъединиц (например, большая и малая субъединицы гемагглютинина вируса гриппа, два гликопротеида, Ег и Ез, вируса леса Семлики) либо с образованием одного функционально активного белка и неактивного фрагмента, например белки Р и НЫ парамик-совирусов. Нарезание обычно осуществляется клеточными ферментами. У многих сложно устроенных вирусов животных, имеющих гликопротеид, нарезание необходимо для формирования активных прикрепительных белков и белков слияния и, следовательно, для приобретения вирусом способности инфицировать клетку. Лишь после нарезания этих белков вирусная частица приобретает инфекционную активность. Таким образом, можно говорить о протеолитической активации ряда вирусов, осуществляемой с помощью клеточных ферментов.
Фосфорилирование. Фосфорпротеиды содержатся практически в составе всех вирусов животных, РНК- и ДНК-содержащих, просто и сложно устроенных. В составе большинства вирусов обнаружены протеинкиназы, однако
фосфорилирование может осуществляться как вирусными, так и клеточными ферментами. Обычно фосфорилируются белки, связанные с вирусным геномом и осуществляющие регулирующую роль в его экспрессии. Одним из примеров является фосфорилирование белка онкогенных вирусов, обусловливающего клеточную трансформацию. Этот белок является продуктом гена 8гс и одновременно протеинки-назой и фосфопротеидом, т. е. способен к самофосфо-рилированию.
С процессом фосфорилирования связан механизм антивирусного действия интерферона. В зараженных вирусом клетках интерферон индуцирует синтез протеин-киназы, которая фосфорилирует субъединицу инициирующего фактора трансляции ЭИФ-2, в результате чего блокируется трансляция вирусных информационных РНК. Фосфорилирование белков играет регулирующую роль в транскрипции и трансляции вирусных иРНК, специфическом узнавании вирусных иРНК рибосомой, белокнуклеи-новом и белок-белковом узнавании на стадии сборки вирусных частиц.
МОРФОГЕНЕЗ ВИРУСОВ
При внутриклеточной репродукции вирусов формируется структуры, отсутствующие в незараженных вирусом клетках. Эти образования — места синтеза и сборки "3?бвирусных структур (компонентов дочерних вирионов) ЙОлучили разные наименования — клеточные матриксы, "«фабрики», виропласты, включения. Эти структуры явля-рггся продуктами кооперативных процессов клетки и арруса, где главенствующая роль принадлежит клетке. ч; Морфологически матриксы выглядят
М матриксы проделывают определенный цикл развития, ш вначале в них превалируют полисомы, то позже Щвявляются субвирусные компоненты, которые можно
а — «фабрики» реовируса в культуре клеток почек обезьян; б — «фабрики» орбивируса в глиальной клетке головного мозга мышей-сосунков; в — очаг иммунофлюоресценции в культуре клеток почек человека, зараженной вирусом Сендай.
выявить при использовании серологических методов исследования типа ИФ (рис. 8, в) или ИЭМ, а нередко и при обычной ЭМ. При ряде инфекций матриксы связаны с мембранами эндоплаз-матической сети, аппаратом Гольджи и другими клеточными структурами, куда транспортируются все вирусные компоненты.
Образования, сходные с цитоплазматичес-кими матриксами, обнаружены также в ядрах,где происходит репродукция большинстваДНК-содержащих вирусов. При окрашиванииклеток они имеют видвнутриядерных включений. На поздних стадиях инфекции в мйтрик-сах или по соседству сними накапливаетсябольшое число вирио-нов, часто образующихкристаллоподобныеформирования. Внутриядерные кристал-лоподобные включения
9. Скопление нуклеокапсидов 8У5 в цитоплазме (электронно-скопическое изображение).
обнаружены, например, у реовирусов, аденовирусов, папо-вавирусов, парвовирусов. Процесс формирования вирионов у вирусов, имеющих липопротеидные оболочки, значительно более сложен, чем у просто устроенных вирусов, и протекает многоступенчато. Так, например, изометрические нуклеокапсиды вируса герпеса формируются в ядрах и в дальнейшем транспортируются в цитоплазму путем почкования через ядерную мембрану. После этого вирионы транспортируются к аппарату Гольджи, проходя через мембрану эндоплазматической сети и захватывая ее, как это было при прохождении через ядерную мембрану. Поэтому внеклеточный вирус имеет две оболочки, одна из которых формируется из ядерной, вторая — из цитоплазматической мембраны (см. рис. 7, е).
Формирование РНП вирионов парамиксовирусов происходит в цитоплазме, где они накапливаются в виде тяжей (рис 9) и затем транспортируются к плазматической мембране. В это время плазматическая мембрана клетки уже модифицирована, так как в нее встроены с наружной стороны вирусные гликопротеиды, а с внутренней стороны — матриксный белок. При приближении к таким модифицированным участкам плазматической мембраны рибонуклеопротеидные тяжи свертываются в плотно упакованные клубки и, проходя через плазматическую мембрану, покрываются ею, приобретая таким путем внешнюю оболочку (рис. 10, а). Этот тип формирования вирионов называется почкованием. Почкование может происходить и во внутриклеточные вакуоли (рис. 10, б).
Морфогенез вируса оспы еще более сложен. В цитоплазме образуются сложные матриксы, в которых происходит синтез многочисленных вирусспецифических структур. Здесь же происходит и формирование вирионов, которые вначале представляют пузырчатые образования (рис. 11), и лишь позже из этих предшественников формируются зрелые вирионы. Выход вирусных частиц из клетки осуществляется либо путем почкования через мембраны во внутриклеточные вакуоли, либо при разрушении клетки.
ПЕРИОДЫ РАЗВИТИЯ ВИРУСОЛОГИИ
Быстрый прогресс в области вирусологических знаний, основанный в значительной мере на достижениях смежных естественных наук, обусловил возможность углубленного познания природы вирусов. Как ни в одной другой науке, в вирусологии прослеживается быстрая и четкая смена уровней познания — от уровня организма до субмолекулярного.
Приведенные периоды развития вирусологии отражают те уровни, которые являлись доминирующими в течение одного — двух десятилетий.
Уровень организма (30-40-е годы XX века). Основной экспериментальной моделью являются лабораторные
животные (белые мыши, крысы, кролики, хомяки и т. д.), основным модельным вирусом — вирус гриппа.
В 40-е годы в вирусологию в качестве экспериментальной модели прочно входят куриные эмбрионы в связи с их высокой чувствительностью к вирусам гриппа, оспы и некоторым другим. Использование этой модели стало возможным благодаря исследованиям австралийского вирусолога и иммунолога Ф. М. Бернета, автора пособия по вирусологии «Вирус как организм».
Открытие в . американским вирусологом Херс-том феномена гемагглютинации немало способствовало изучению взаимодействия вируса с клеткой на модели вируса гриппа и эритроцитов.
Большим вкладом отечественных вирусологов в медицинскую вирусологию явилось изучение природна-очаго-вых заболеваний — эпидемических энцефалитов. В . была организована первая экспедиция, возглавляемая Л. А. Зильбером, в составе которой были Б. Н. Левкович, А. К. Шубладзе, М. П. Чумаков, В. Д. Соловьев и др. Благодаря проведенным исследованиям был открыт вирус клещевого энцефалита, выявлены его переносчики — ик-содовые клещи, разработаны методы лабораторной диагностики, профилактики и лечения. Советскими вирусологами были изучены вирусные геморрагические лихорадки, разработаны препараты для диагностических и лечебно-профилактических целей.
Уровень клетки (50-е годы). В . происходит значительное событие в истории вирусологии — открытие возможности культивировать клетки в искусственных условиях. В . Дж. Эндерс, Т. Уэллер, Ф. Роббинс получили Нобелевскую премию за разработку метода культуры клеток. Использование культуры клеток в вирусологии явилось подлинно революционным событием, послужившим основой для выделения многочисленных новых вирусов, их идентификации, клонирования, изучения их взаимодействия с клеткой. Появилась возможность получения культуральных вакцин. Эта возможность была доказана на примере вакцины против полиомиелита. В содружестве с американскими вирусологами Дж. Солком и А. Сейбином, советскими вирусологами М. П. Чумаковым, А. А. Смородинцевым и др. была разработана технология производства, апробирована и внедрена в практику убитая и живая вакцины против полиомиелита. В . была проведена массовая иммунизация детского населения в СССР (около 15 млн.) живой полиомиелитной вакциной,
7
в результате резко снизилась заболеваемость полиомиели том и практически исчезли паралитические формы заболевания. В . за разработку и внедрение в практику живой полиомиелитной вакцины М. П. Чумакову и А. А. Смородинцеву была присуждена Ленинская премия. Другим важным приложением техники выращивания вирусов явилось получение Дж. Эндерсом и А. А. Смородинце-вым живой коревой вакцины, широкое применение которой обусловило значительное снижение заболеваемости корью и является основой для искоренения этой инфекции.
Широко внедрялись в практику и другие культураль-ные вакцины — энцефалитная, ящурная, антирабическая и т. д.
Молекулярный уровень (60-е годы). В вирусологии широко стали использовать методы молекулярной биологии, а вирусы благодаря простой организации их генома стали распространенной моделью для молекулярной биологии. Ни одно открытие молекулярной биологии не обходится без вирусной модели, включая генетический код, весь механизм внутриклеточной экспрессии генома, репликацию ДНК, процессинг (созревание) информационных РНК и т. д. В свою очередь использование молекулярных методов в вирусологии позволило установить принципы строения (архитектуры) вирусных индивидуумов — вирионов (термин, введенный французским микробиологом А. Львовом), способы проникновения вирусов в клетку и их репродукции.
Субмолекулярный уровень (70-е годы). Стремительное развитие молекулярной биологии открывает возможности изучения первичной структуры нуклеиновых кислот и белков. Появляются методы секвенирования ДНК, определения аминокислотных последовательностей белка. Получают первые генетические карты геномов ДНК-содержа-щих вирусов.
В . Д. Балтимором и одновременно Г. Теминым и С. Мизутани была открыта обратная транскриптаза в составе РНК-содержащих онкогенных вирусов, фермент, переписывающий РНК на ДНК. Становится реальным синтез гена с помощью этого фермента на матрице, выделенной из полисом иРНК. Появляется возможность переписать РНК в ДНК и провести ее секвенирование.
В . возникает новый раздел молекулярной биологии — генная инженерия. В этом году публикуется сообщение П. Берга в США о создании рекомбинантной
молекулы ДНК, которое положило начало эре генной инженерии. Появляется возможность получения большого количества нуклеиновых кислот и белков путем введения рекомбинантных ДНК в состав генома прокариот и простых эукариот. Одним из основных практических приложений нового метода является получение дешевых препаратов белков, имеющих значение в медицине (инсулин, интерферон) и сельском хозяйстве (дешевые белковые корма для скота).
Этот период характеризуется важными открытиями в области медицинской вирусологии. В фокусе изучения — три наиболее массовых болезни, наносящих огромный ущерб здоровью людей и народному хозяйству,— грипп, рак, гепатит.
Установлены причины регулярно повторяющихся пандемий гриппа. Детально изучены вирусы рака животных (птиц, грызунов), установлена структура их генома и идентифицирован ген, ответственный за злокачественную трансформацию клеток — онкоген. Установлено, что причиной гепатитов А и В являются разные вирусы: гепатит А вызывает РНК-содержащий вирус, отнесенный к семейству пикорнавирусов, а гепатит В — ДНК-содержащий вирус, отнесенный к семейству гепаднавирусов. В . Г. Бламберг, исследуя антигены крови у аборигенов Австралии, обнаружил так называемый австралийский антиген, который он принял за один из антигенов крови. Позже было выявлено, что этот антиген является антигеном гепатита В, носительство которого распространено во всех странах мира. За открытие австралийского антигена Г. Бламбергу в . была присуждена Нобелевская премия.
Другая Нобелевская премия в . присуждена американскому ученому К. Гаидушеку, который установил вирусную этиологию, одной из медленных инфекций человека — куру, наблюдающейся в одном из туземных племен на острове Новая Гвинея и связанной с ритуальным обрядом — поеданием зараженного мозга умерших родственников. Благодаря усилиям К. Гайдушека, поселившегося на острове Новая Гвинея, эта традиция была искоренена и число больных резко сократилось.
ОСНОВЫ КЛАССИФИКАЦИИ
Современная классификация вирусов является универсальной для вирусов позвоночных, беспозвоночных, растений и простейших. Она основана на фундаментальных свойствах вирионов, из которых ведущими являются признаки, характеризующие нуклеиновую кислоту, мор-
фологию, стратегию генома и антигенные свойства. Фундаментальные свойства поставлены на первое место, поскольку вирусы со сходными антигенными свойствами обладают и сходным типом нуклеиновой кислоты, сходными морфологическими и биофизическими свойствами.
Важным признаком для классификации, который учитывается наряду со структурными признаками, является стратегия вирусного генома, под которой понимают используемый вирусом способ репродукции, обусловленный особенностями его генетического материала. Например, полярность вирусной РНК является основным критерием для группировки вирусов и при отсутствии общих антигенных свойств.
Антигенные и другие биологические свойства являются признаками, лежащими в основе формирования вида и имеющими значение в пределах рода.
В основу современной классификации положены следующие основные критерии.
1. Тип нуклеиновой кислоты (РНК или ДНК), ее структура (количество нитей).
2. Наличие липопротеидной оболочки.
3. Стратегия вирусного генома.
4. Размер и морфология вириона, тип симметрии, число капсомеров.
5. Феномены генетических, взаимодействий.
6. Круг восприимчивых хозяев.
7. Патогенность, в том числе патологические изменения в клетках и образование внутриклеточных включений.
8. Географическое распространение.
9. Способ передачи.
10. Антигенные свойства.
На основании перечисленных признаков вирусы делятся на семейства, подсемейства, роды и типы. Деление на семейства произведено по критериям, изложенным в пунктах 1 и 2, деление на роды и типы — на основании нижеперечисленных признаков. Схематически строение семейств вирионов, поражающих позвоночных, приведено на рис. 12. Дополнительно выделены еще 2 семейства: Серадпаушдае и ИауМгМае (выделенные из семейства То§ау1Пс1ае). Семейства вирусов животных и их таксономические признаки приведены в табл. 7 и 8.
Современная классификация вирусов человека и животных охватывает более 4/5 всех известных вирусов, которые распределены в 19 семейств, из них 7 — ДНК-содержащих и 12— РНК-содержащих вирусов.БЕЛКИ
В зараженной клетке вирусный геном кодирует синтез двух групп белков: 1) структурных, которые входят в состав вирусных частиц потомства, и 2) неструктурных, которые обслуживают процесс внутриклеточной репродукции вируса на разных его этапах, но в состав вирусных частиц не входят.
Структурные белки. Количество структурных белков в составе вирусной частицы варьирует в широких пределах в зависимости от сложности организации вириона. Наиболее просто организованный вирус табачной мозаики содержит всего один небольшой белок с молекулярной массой 17—18- 103, некоторые фаги содержат 2—3 белка, просто организованные вирусы животных — 3—4 белка. Сложно устроенные вирусы, такие как вирусы оспы, содержат более 30 структурных белков.
Структурные белки делятся на 2 группы:
1) капсидные белки, образующие капсид, т. е. футляр для нуклеиновой кислоты вируса (от лат. сарза — вместилище), и входящие в состав капсида геномные белки, и ферменты;
2) суперкапсидные белки, входящие в состав суперкап-сида, т. е. наружной вирусной оболочки.
Поскольку суперкапсид называют также «пеплос» (от греч. рер1оз — покров, мантия), эти белки называют пепло-мерами.
Просто организованные вирусы, представляющие собой нуклеокапсид, содержат только капсидные белки. Сложно организованные вирусы содержат капсидные и суперкап-слдные белки.
Капсидные белки. Первоначальное представление о том, что капсидные белки являются всего лишь инертной оболочкой для вирусной нуклеиновой кислоты, сложилось на основании изучения наиболее просто организованного вируса табачной мозаики, частица которого состоит из одной молекулы РНК и одного типа белка, образующего чехол для РНК. Однако такое представление неправильно. Хотя основной функцией капсидных белков
является функция защиты вирусного генома от неблагоприятных воздействий внешней среды, у многих вирусов в составе капсида есть белки и с другими функциями. Поэтому термин «капсид» далеко выходит за пределы представления о нем как о футляре или чехле для вирусной нуклеиновой кислоты.
В составе капсида некоторых вирусов (пикорнавирусы, паповавирусы, аденовирусы) содержатся белки, ковалент-но связанные с вирусным геномом (геномные белки). Эти белки являются терминальными, т. е. соединенными с концом вирусной нуклеиновой кислоты. Функции их неразрывно связаны с функциями генома и их регуляцией.
У ряда сложно организованных вирусов в составе капсида имеются ферменты, осуществляющие транскрипцию и репликацию вирусного генома — РНК и ДНК (РНК-и ДНК-полимеразы), а также ферменты, модифицирующие концы иРНК. Если ферменты и геномные белки представлены единичными молекулами, то капсидные белки представлены множественными молекулами. Эти белки и формируют капсидную оболочку, в которую у сложно организованных вирусов вставлены молекулы белков с другими функциями.
Основным принципом строения капсидной оболочки вирусов является принцип субьединичности, т. е. построение капсидной оболочки из субъединиц-капсомеров, образованных идентичными полипептидными цепями. Правильно построенные белковые субъединицы — капсомеры возникают благодаря способности вирусных капсидных белков к самосборке. Самосборка объясняется тем, что упорядоченная структура — капсид имеет наименьшую свободную энергию по сравнению с неупорядоченными белковыми молекулами. Сборка капсидной оболочки из субъединиц запрограммирована в первичной структуре белка и происходит самопроизвольно или при взаимодействии с нуклеиновой кислотой.
Принцип субъединичности в строении вирусного капсида является универсальным свойством капсидных белков и имеет огромное значение для вирусов. Благодаря этому свойству достигается огромная экономия генетического материала. Если бы капсидная оболочка была построена из разных белков, то на кодирование ее потребовалась бы основная часть генетической информации, заложенной в вирусном геноме. В действительности на кодирование, например, одной полипептидной цепи вируса табачной
мозаики, расходуется менее 10% генома. Далее, в механизме самосборки заложена возможность контроля за полноценностью вирусных полипептидов: дефектные и чужеродные полипептидные цепи при таком способе сборки вирионов будут автоматически отбрасываться.
Описанная способность к самосборке в пробирке и в зараженной клетке характерна только для простых вирусов. Сборка сложно организованных вирусов является гораздо более сложным многоступенчатым процессом, хотя отдельные ее этапы, например формирование капсидов и нуклеокапсидов, также основаны на самосборке.
Суперкапсидные белки. Гликопротеиды. Суперкапсидные белки, или пепломеры, располагаются в липопротеидной оболочке (суперкапсиде или пеплосе) сложно устроенных вирусов. Они либо пронизывают насквозь липидный бислой как, например, гликопротеиды альфа-вирусов (вируса леса Семлики), либо не доходят до внутренней поверхности. Эти белки являются типичными внутримембранными белками и имеют много общего с клеточными мембранными белками. Как и последние, суперкапсидные белки обычно гликозилированы. Углеводные цепочки прикреплены к молекуле полипептида в определенных участках. Гликозилирование осуществляют клеточные ферменты, поэтому один и тот же вирус, продуцируемый разными видами клеток, может иметь разные у углеводные остатки: может варьировать как состав углеводов, так и длина углеводной цепочки и место прикрепления ее к полипептидному остову.
У большинства вирусов гликопротеиды формируют «шипы» на поверхности вирусной частицы, длина которых достигает 7—10 им. Шипы представляют собой морфологические субъединицы, построенные из нескольких молекул одного и того же белка. Вирусы гриппа имеют два типа шипов, построенных соответственно из гемагглютини-на и нейраминидазы. Парамиксовирусы также имеют два типа шипов, построенных соответственно из двух глико-протеидов (НИ и Р), рабдовирусы имеют только один гликопротеид и, соответственно, один тип шипов, а альфа-вирусы имеют два или три гликопротеида, формирующих один тип шипов.
Гликопротеиды являются амфипатическими молекулами: они состоят из наружной, гидрофильной части, которая содержит на конце аминогруппу ДО -конец), и погруженной в липидный бислой, гидрофобной части, которая содержит на погруженном конце гидроксильную группу
(С-конец). С-концом полипетид «заякоривается» в липид ном бислое. Есть, однако, и исключения из этого общего положения: нейраминидаза вируса гриппа взаимодействует с липидным бислоем не С-, а г4-концом.
Основной функцией гликопротеидов является взаимодействие со специфическими рецепторами клеточной поверхности. Благодаря этим белкам осуществляется распознавание специфических клеточных рецепторов и прикрепление к ним вирусной частицы, т. е. адсорбция вируса на клетке. Поэтому гликопротеиды, выполняющие эту функцию, называют вирусными прикрепительными белками.
Другой функцией гликопротеидов является участие в слиянии вирусной и клеточной мембран, т. е. в событии, ведущем к проникновению вирусных частиц в клетку. Вирусные белки слияния ответственны за такие процессы, как гемолиз и слияние плазматических мембран соседних клеток, приводящие к образованию гигантских клеток, синци-тиев и симпластов.
«Адресная функция» вирусных белков. Вирусы вызывают инфекционный процесс у относительно небольшого круга хозяев. Вирус должен «узнать» чувствительную клетку, которая сможет обеспечить продукцию полноценного вирусного потомства. Если бы вирус проникал в любую клетку, которая встретилась на его пути, это привело бы к исчезновению вирусов в результате деструкции "«родительской» вирусной частицы и отсутствия вирусного потомства. В процессе эволюции у вирусов вырабатывалась так называемая адресная функция, т. е. поиск чувствительного хозяина среди бесконечного числа нечувствительных клеток. Эта функция реализуется путем наличия специальных белков на поверхности вирусной частицы, которые узнают специфический рецептор на поверхности чувствительной клетки.
Неструктурные белки. Неструктурные белки изучены гораздо хуже, чем структурные, поскольку их выделяют не из очищенных препаратов вирусов, а из зараженных клеток, и возникают трудности в их идентификации и очистке от клеточных белков.
К неструктурным белкам относятся:
1) предшественники вирусных белков, которые отличаются от других неструктурных белков нестабильностью в зараженной клетке в результате быстрого нарезания на структурные белки;
2) ферменты синтеза РНК и ДНК (РНК- и ДНК-26
полимеразы), обеспечивающие транскрипцию и репликацию вирусного генома;
3) белки-регуляторы;
4) ферменты, модифицирующие вирусные белки, например протеиназы и протеинкиназы.
Однако многие неструктурные белки при ряде вирусных инфекций еще не идентифицированы и функции их не определены. Типы структурных и неструктурных белков просто и сложно устроенных вирусов и их функ-' ции показаны на схеме
ТРАНСКРИПЦИЯ
Транскрипция — это переписывание ДНК на РНК по законам генетического кода. Это означает, что РНК состоит из нуклеотидных последовательностей, комплементарных ДНК. Нити ДНК в участке транскрипции разделяются и функционируют как матрицы, к которым присоединяются комплементарные нуклеотиды благодаря спариванию комплементарных оснований (аденин связывается с тимином, урацил — с аденином, гуанин — с цито-зином и цитозин — с гуанином) (рис. 16). Транскрипция осуществляется с помощью специального фермента — РНК-полимеразы, который связывает нуклеотиды путем образования 3'-5'-фосфодиэфирных мостиков. Такое связывание происходит лишь в присутствии ДНК-матрицы.
Продуктами транскрипции в клетке являются иРНК. Сама клеточная ДНК, являющаяся носителем генетической информации, не может непосредственно программировать синтез белка. Передачу генетической информации от ДНК к рибосомам осуществляет РНК-посредник. На этом основана центральная догма молекулярной биологии, которая выражается следующей формулой:
транскрипция трансляцияДНК —----- -------- * РНК —----------- белок,
где стрелки показывают направление переноса генетической информации.
Реализация генетической информации у вирусов. Стратегия вирусного генома в отношении синтеза иРНК у разных вирусов различна. У ДНК-содержащих вирусов иРНК синтезируется на матрице одной из нитей ДНК. Формула переноса генетической информации у них такая же, как и в клетке.
транскрипция трансляцияДНК—------ -------- >- РНК —----------- >• белок.
ДНК-содержащие вирусы, репродукция которых происходит в ядре, используют для транскрипции клеточную полимеразу. К этим вирусам относятся паповавирусы, аденовирусы, вирусы герпеса. ДНК-содержащие вирусыПРОИСХОЖДЕНИЕ ВИРУСОВ
По вопросу о происхождении вирусов высказывались разные предположения. Одни авторы считали, что вирусы являются результатом крайнего проявления регрессивной эволюции бактерий или других одноклеточных организмов. Гипотеза регрессивной эволюции не может объяснить разнообразия генетического материала у вирусов, неклеточной их организации, дисъюнктивного способа репродукции и отсутствия белок-синтезирующих систем. Поэтому в настоящее время эта гипотеза имеет скорее историческое значение и не разделяется большинством вирусологов.
Согласно второй гипотезе вирусы являются потомками древних, доклеточных форм жизни — протобионтов, предшествовавших появлению клеточных форм жизни, с которых и началась биологическая эволюция. Эта гипотеза также не разделяется в настоящее время большинством вирусологов, так как она не объясняет тех же вопросов, разрешить которые оказалась бессильной первая гипотеза.
Третья гипотеза предполагает, что вирусы произошли от генетических элементов клеток, ставших автономными, хотя не ясно, какие из этих элементов дали начало столь большому разнообразию генетического материала у вирусов. Эта гипотеза, которую иронически назвали гипотезой «взбесившихся генов», находит наибольшее число сторон-' ников, однако не в том первоначальном виде, в каком она была высказана, так как и она не объясняет наличие у вирусов форм генетического материала (однонитчатая ДНК, двунитчатая РНК), отсутствующих в клетках,образование капсида, существование двух форм симметрии и т. п.
Вероятно, вирусы действительно являются дериватами генетических элементов клеток, но они возникали и эволюционировали вместе с возникновением и эволюцией клеточных форм жизни. Природа как бы испробовала на вирусах все возможные формы генетического материала (разные виды РНК и ДНК), прежде чем окончательно остановила свой выбор на канонической его форме — двунитчатой ДНК, общей для всех клеточных форм организмов, начиная от бактерии и кончая человеком. Будучи, с одной стороны, автономными генетическими структурами, с другой стороны, неспособными развиваться вне клеток, вирусы на протяжении миллиардов лет биологической эволюции проделали настолько разнообразные пути развития, что^ отдельные их группы не имеют преемственной связи между собой. По-видимому, разные группы вирусов возникали в исторически разные времена из разных генетических элементов клеток и поэтому существующие в настоящее время разные группы вирусов имеют полифиле-тическое происхождение, т. е. не имеют единого общего предка. Тем не менее, 'универсальность генетического кода распространяется и на вирусы, свидетельствуя тем самым, что и они являются порождением органического мира земли.
ПРОНИКНОВЕНИЕ ВИРУСОВ В КЛЕТКУ
Исторически сложилось представление о двух альтернативных механизмах проникновения в клетку вирусов животных — путем виропексиса (эндоцитоза) и путем слияния вирусной и клеточной мембран. Однако оба эти механизма не исключают, а дополняют друг друга.
Термин «виропексис», предложенный в . Фазе-касом де сан Гро, означает, что вирусная частица попадает в цитоплазму в результате инвагинации участка плазма-
тической мембраны и образования вакуоли, которая содержит вирусную частицу.
Рецепторный эндоцитоз. Виропексис представляет собой частный случай рецепторного или адсорбционного эндоцитоза. Этот процесс является обычным механизмом, благодаря которому в клетку поступают питательные и регуляторные белки, гормоны, липопротеины и другие вещества из внеклеточной жидкости. Рецепторный эндоцитоз происходит в специализированных участках плазматической мембраны, где имеются специальные ямки, покрытые со стороны цитоплазмы особым белком с большой молекулярной массой — клатрином. На дне ямки располагаются специфические рецепторы. Ямки обеспечивают быструю инвагинацию и образование покрытых клатрином внутриклеточных вакуолей. Полупериод проникновения вещества внутрь клетки по этому механизму не превышает 10 мин с момента адсорбции. Количество образующихся в одну минуту вакуолей достигает более 2000. Таким образом, рецепторный эндоцитоз представляет собой хорошо слаженный механизм, который обеспечивает быстрое проникновение в клетку чужеродных веществ.
Покрытые вакуоли сливаются с другими, более крупными цитоплазматическими вакуолями, образуя рецепто-сомы, содержащие рецепторы, но не содержащие клатрин, а те в свою очередь сливаются с лизосомами. Таким путем проникшие в клетку белки обычно транспортируются в лизосомы, где происходит их распад на аминокислоты; они могут и миновать лизосомы, и накапливаться в других участках клетки в недеградированной форме. Альтернативой рецепторного эндоцитоза является жидкостный эндоцитоз, когда инвагинация происходит не в специализированных участках мембраны.
Большинство оболочечных и безоболочечных вирусов животных проникает в клетку по механизму рецепторного эндоцитоза. Эндоцитоз обеспечивает внутриклеточный транспорт вирусной частицы в составе эндоцитарной вакуоли, поскольку вакуоль может двигаться в любом направлении и сливаться с клеточными мембранами (включая ядерную мембрану), освобождая вирусную частицу в соответствующих внутриклеточных участках. Таким путем, например, ядерные вирусы попадают в ядро, а реовирусы — в лизосомы. Однако проникшие в клетку вирусные частицы находятся в составе вакуоли и отделены от цитоплазмы ее стенками.Мое женское здоровье © 2012-2024 Все права защищены. info@mywomanhealth.ru