Греческий салат с креветками
УСТОЙЧИВОСТЬ ВИРУСОВ В ОКРУЖАЮЩЕЙ СРЕДЕ
Разные группы вирусов обладают неодинаковой устойчивостью во внешней среде. Наименее устойчивыми являются вирусы, имеющие липопротеидные оболочки, наиболее устойчивыми — изометрические вирусы. Так, например, ортомиксовирусы и парамиксовирусы инактиви-
руются на поверхностях в течение нескольких часов, тогда как вирусы полиомиелита, аденовирусы, реовирусы сохраняют инфекционную активность в течение нескольких дней.
Однако из этого общего правила имеются и исключения. Так, вирус оспы устойчив к высыханию и сохраняется в экскретах в течение многих недель и месяцев. Вирус гепатита В устойчив к действию неблагоприятных внешних факторов и сохраняет свою активность в сыворотке даже при кратковременном кипячении.
Чувствительность вирусов к ультрафиолетовому и рентгеновскому облучению зависит преимущественно от размеров их генома. Поэтому, например, вирус оспо-вакцины (молекулярная масса генома около 2 • 108) инактивируется при. рентгеновском облучении около 5 • Ю4 рад, в то время как мелкий вирус папилломы (молекулярная масса генома 3* Ю6) для инактивации требует облучения 4 • 105 рад.
Чувствительность вирусов к инактивации формальдегидом и другими химическими веществами, инакти-вирующими генетический материал, зависит от многих условий, среди которых следует назвать плотность упаковки нуклеиновой кислоты в белковый футляр, размеры генома, наличие или отсутствие внешних оболочек и т. п. Вирусы, имеющие липопротеидные оболочки, чувствительны к эфиру, хлороформу и детергентам, в то время как просто устроенные изометрические и палочковидные вирусы устойчивы к их действию.
Наконец, важной особенностью вирусов является чувствительность к рН. Есть вирусы, устойчивые к кислым значениям рН
Язвочки во рту
Афтозный стоматит: афтозные язвы представляют собой поражения слизистой оболочки рта, включая щеки, язык и небо. Язвочки состоят из очень болезненного, желтовато-белого кратера, окруженного красной полоской воспаления. Если ребенок попадает в стрессовую ситуацию отдельно расположенные язвочки могут сливаться. Период заживления составляет 1-2 недели. Причины появления афтозных язв точно не установлены. К ним относят вирусную инфекцию, эндокринные нарушения, хронический запор, эмоциональные расстройства, нарушения иммунитета.
Симптомы: недомогание, слюнотечение, отказ от пищи, гиперемия слизистой оболочки рта, образование на щеках, языке, губах, небе, афт-болезненных элементов округлой формы с беловато-серым налетом и ярко-красным ободком. Температура тела до 40 гр. С. Лимфатические узлы увеличены, болезненны. В тяжелых случаях афты сливаются, изъязвляются. Могут быть “отсевы” на коже. Заболевание длится 7- 14 дней. Выздоровление полное. Иммунитет нестойкий.
Заживление афт начинается после самостоятельного отслаивания налета фибрина и заканчивается полным исчезновением дефекта. В отличие от острого афтозного стоматита хроническая форма обычно связана с наличием общего хронического заболевания, чаще всего толстого кишечника, которая проявляется вместе с его обострениями. Клиника не столь ярка и характеризуется последовательной сменой фаз: продромальной, афтозной, язвенной и заживления. Лечение афтозного стоматита аналогично язвенному, но местно могут применяться также антибиотики и противогрибковые препараты. Общее лечение дополнительно может включать антибиотики, противовоспалительные, антигистаминные и др. препараты.
БИОФИЗИЧЕСКИЕ СВОЙСТВА ВИРУСОВ
Биофизические свойства вирусов характеризуются многими показателями — седиментацией, плотностью, вязкостью вирусных суспензий, диффузионными свойст-
Седиментационные свойства вирусов и субвирусных компонентов измеряют с помощью центрифугирования в аналитических и препаративных ультрацентрифугах. Коэффициент седиментации выражают в единицах Свед-РГЗ ,?0ереводе на станДартные условия — при температуре 20 С в воде и обозначают как 82
Коэффициенты седиментации вирионов зависят от многих факторов: от их размера и массы, плотности, формы. Для определения плотности вирионов и субвирусных структур применяют равновесное центрифугирование в градиентах плотности. Для вирионов и вирусных нуклеопротеидов обычно используют градиенты плотности сахарозы и хлорида цезия.
Плотность вирионов и субвирусных структур зависит прежде всего от их состава. Она увеличивается с увеличением процента содержания нуклеиновых кислот и уменьшается при повышении содержания белков и липи-дов (табл. 6)
вами. Все эти характеристики относятся также к субвирусным компонентам. Наиболее важными биофизическими характеристиками вирусов являются седимента-ционные и плотностные свойства. Они чаще всего измеряются при исследовании вирусов.
ПЕРИОДЫ РАЗВИТИЯ ВИРУСОЛОГИИ
Быстрый прогресс в области вирусологических знаний, основанный в значительной мере на достижениях смежных естественных наук, обусловил возможность углубленного познания природы вирусов. Как ни в одной другой науке, в вирусологии прослеживается быстрая и четкая смена уровней познания — от уровня организма до субмолекулярного.
Приведенные периоды развития вирусологии отражают те уровни, которые являлись доминирующими в течение одного — двух десятилетий.
Уровень организма (30-40-е годы XX века). Основной экспериментальной моделью являются лабораторные
животные (белые мыши, крысы, кролики, хомяки и т. д.), основным модельным вирусом — вирус гриппа.
В 40-е годы в вирусологию в качестве экспериментальной модели прочно входят куриные эмбрионы в связи с их высокой чувствительностью к вирусам гриппа, оспы и некоторым другим. Использование этой модели стало возможным благодаря исследованиям австралийского вирусолога и иммунолога Ф. М. Бернета, автора пособия по вирусологии «Вирус как организм».
Открытие в . американским вирусологом Херс-том феномена гемагглютинации немало способствовало изучению взаимодействия вируса с клеткой на модели вируса гриппа и эритроцитов.
Большим вкладом отечественных вирусологов в медицинскую вирусологию явилось изучение природна-очаго-вых заболеваний — эпидемических энцефалитов. В . была организована первая экспедиция, возглавляемая Л. А. Зильбером, в составе которой были Б. Н. Левкович, А. К. Шубладзе, М. П. Чумаков, В. Д. Соловьев и др. Благодаря проведенным исследованиям был открыт вирус клещевого энцефалита, выявлены его переносчики — ик-содовые клещи, разработаны методы лабораторной диагностики, профилактики и лечения. Советскими вирусологами были изучены вирусные геморрагические лихорадки, разработаны препараты для диагностических и лечебно-профилактических целей.
Уровень клетки (50-е годы). В . происходит значительное событие в истории вирусологии — открытие возможности культивировать клетки в искусственных условиях. В . Дж. Эндерс, Т. Уэллер, Ф. Роббинс получили Нобелевскую премию за разработку метода культуры клеток. Использование культуры клеток в вирусологии явилось подлинно революционным событием, послужившим основой для выделения многочисленных новых вирусов, их идентификации, клонирования, изучения их взаимодействия с клеткой. Появилась возможность получения культуральных вакцин. Эта возможность была доказана на примере вакцины против полиомиелита. В содружестве с американскими вирусологами Дж. Солком и А. Сейбином, советскими вирусологами М. П. Чумаковым, А. А. Смородинцевым и др. была разработана технология производства, апробирована и внедрена в практику убитая и живая вакцины против полиомиелита. В . была проведена массовая иммунизация детского населения в СССР (около 15 млн.) живой полиомиелитной вакциной,
7
в результате резко снизилась заболеваемость полиомиели том и практически исчезли паралитические формы заболевания. В . за разработку и внедрение в практику живой полиомиелитной вакцины М. П. Чумакову и А. А. Смородинцеву была присуждена Ленинская премия. Другим важным приложением техники выращивания вирусов явилось получение Дж. Эндерсом и А. А. Смородинце-вым живой коревой вакцины, широкое применение которой обусловило значительное снижение заболеваемости корью и является основой для искоренения этой инфекции.
Широко внедрялись в практику и другие культураль-ные вакцины — энцефалитная, ящурная, антирабическая и т. д.
Молекулярный уровень (60-е годы). В вирусологии широко стали использовать методы молекулярной биологии, а вирусы благодаря простой организации их генома стали распространенной моделью для молекулярной биологии. Ни одно открытие молекулярной биологии не обходится без вирусной модели, включая генетический код, весь механизм внутриклеточной экспрессии генома, репликацию ДНК, процессинг (созревание) информационных РНК и т. д. В свою очередь использование молекулярных методов в вирусологии позволило установить принципы строения (архитектуры) вирусных индивидуумов — вирионов (термин, введенный французским микробиологом А. Львовом), способы проникновения вирусов в клетку и их репродукции.
Субмолекулярный уровень (70-е годы). Стремительное развитие молекулярной биологии открывает возможности изучения первичной структуры нуклеиновых кислот и белков. Появляются методы секвенирования ДНК, определения аминокислотных последовательностей белка. Получают первые генетические карты геномов ДНК-содержа-щих вирусов.
В . Д. Балтимором и одновременно Г. Теминым и С. Мизутани была открыта обратная транскриптаза в составе РНК-содержащих онкогенных вирусов, фермент, переписывающий РНК на ДНК. Становится реальным синтез гена с помощью этого фермента на матрице, выделенной из полисом иРНК. Появляется возможность переписать РНК в ДНК и провести ее секвенирование.
В . возникает новый раздел молекулярной биологии — генная инженерия. В этом году публикуется сообщение П. Берга в США о создании рекомбинантной
молекулы ДНК, которое положило начало эре генной инженерии. Появляется возможность получения большого количества нуклеиновых кислот и белков путем введения рекомбинантных ДНК в состав генома прокариот и простых эукариот. Одним из основных практических приложений нового метода является получение дешевых препаратов белков, имеющих значение в медицине (инсулин, интерферон) и сельском хозяйстве (дешевые белковые корма для скота).
Этот период характеризуется важными открытиями в области медицинской вирусологии. В фокусе изучения — три наиболее массовых болезни, наносящих огромный ущерб здоровью людей и народному хозяйству,— грипп, рак, гепатит.
Установлены причины регулярно повторяющихся пандемий гриппа. Детально изучены вирусы рака животных (птиц, грызунов), установлена структура их генома и идентифицирован ген, ответственный за злокачественную трансформацию клеток — онкоген. Установлено, что причиной гепатитов А и В являются разные вирусы: гепатит А вызывает РНК-содержащий вирус, отнесенный к семейству пикорнавирусов, а гепатит В — ДНК-содержащий вирус, отнесенный к семейству гепаднавирусов. В . Г. Бламберг, исследуя антигены крови у аборигенов Австралии, обнаружил так называемый австралийский антиген, который он принял за один из антигенов крови. Позже было выявлено, что этот антиген является антигеном гепатита В, носительство которого распространено во всех странах мира. За открытие австралийского антигена Г. Бламбергу в . была присуждена Нобелевская премия.
Другая Нобелевская премия в . присуждена американскому ученому К. Гаидушеку, который установил вирусную этиологию, одной из медленных инфекций человека — куру, наблюдающейся в одном из туземных племен на острове Новая Гвинея и связанной с ритуальным обрядом — поеданием зараженного мозга умерших родственников. Благодаря усилиям К. Гайдушека, поселившегося на острове Новая Гвинея, эта традиция была искоренена и число больных резко сократилось.
Осторожно! Грипп!
Грипп - это инфекционное вирусное заболевание, вызываемое несколькими возбудителями. Все вирусы гриппа делятся на три типа, обозначаемые литерами А, В и С. Вирус гриппа типа А отличается чрезвычайной изменчивостью (т.е. он с легкостью меняет свою структуру, а значит, всякий раз воспринимается организмом как новый, неизвестный), тип В изменчив, но в меньшей степени, а тип С наиболее стабилен. Именно поэтому можно за одну и ту же зиму несколько раз переболеть гриппом. Вирус гриппа размножается в клетках слизистой оболочки верхних дыхательных путей - носовых раковин, зева, гортани.
У беременных женщин иммунитет часто ослаблен, поэтому вероятность заразиться повышается по сравнению с небеременным состоянием. Чтобы этого не произошло, врачи рекомендуют перед прогнозируемой эпидемией сделать прививку от гриппа. Современные прививки содержат инактивированный (убитый) вирус гриппа, поэтому считается, что он безопасен для ребенка.
Однако, если срок вашей беременности меньше, чем 14 недель, то прививку от гриппа делать не следует. Кроме того, ни одна прививка от гриппа не гарантирует, что вы точно не заболеете этой болезнью. Все равно остается пусть маленькая, но неприятная возможность перенести грипп, часто в стертой форме. Поэтому повышение иммунитета лишним не будет. А это и закаливание, и здоровый образ жизни, и правильное питание, и физическая активность.
Если Вы чувствуете себя очень плохо, обязательно вызовите врача. Только врач может решить, чем Вы больны и в каком лечении Вы нуждаетесь. Если Вы думаете, что заболели гриппом, вызывайте врача при появлении первых симптомов (в первые 2 дня).
Те, кто болеет хроническими болезнями, а также лица старше 50 лет составляют особую группу риска и при заболевании гриппом всегда должны сразу же обращаться к врачу.
Иногда грипп вызывает такие серьезные инфекционные осложнения, как воспаление легких (пневмония), бронхит, синусит и воспаление среднего уха (отит). Немедленно проконсультируйтесь с врачом, если у Вас появились следующие симптомы: кашель с густой мокротой, окрашенной или с прожилками крови повторяющаяся лихорадка, боли в грудной клетке, отечность лица, боли в ухе или резкие боли в области лица или лба.
Вирусные ДНК
Молекулярная масса вирусных ДНК варьирует в широких пределах. Самые большие вирусные геномы содержат несколько сотен генов, а самые маленькие содержат информацию, достаточную для синтеза лишь нескольких белков.
В геномах, представленных двунитчатыми ДНК, информация обычно закодирована на обеих нитях ДНК. Это свидетельствует о максимальной экономии генетического материала у вирусов, что является неотъемлемым свойством их как генетических паразитов. В связи с этим оценка генетической информации не может быть проведена по молекулярной массе молекул.
Хотя в основном структура ДНК уникальна, т. е. большинство нуклеотидных последовательностей встречаются лишь по одному разу, однако на концах молекул имеются повторы, когда в концевом фрагменте линейной ДНК повторяется ее начальный участок. Повторы могут быть прямыми и инвертированными.
Способность к приобретению кольцевой формы, которая потенциально заложена в концевых прямых и, инвертированных повторах, имеет большое значение для вирусов. Кольцевая форма обеспечивает устойчивость ДНК к экзонуклеазам. Стадия образования кольцевой формы обязательна для процесса интеграции ДНК с клеточным геномом. Наконец, кольцевые формы представляют собой удобный и эффективный способ регуляции транскрипции и репликации ДНК.
В составе вирионов, содержащих однонитчатую ДНК, обычно содержатся молекулы ДНК одной полярности. Исключение составляют аденоассоциированные вирусы, вирионы которых содержат ДНК либо одной полярности (условно называемой «плюс»), либо ДНК с противоположным знаком (условно — «минус»). Поэтому тотальный препарат вируса состоит из двух типов частиц, содержащих по одной молекуле «плюс»- или «минус»-ДНК.
Инфекционный процесс при заражении этими вирусами возникает лишь при проникновении в клетку частиц обоих типов.
Вирусные РНК
Из нескольких сотен известных в настоящее время вирусов человека и животных РНК-геном содержит около 80% вирусов. Способность РНК хранить наследственную информацию является уникальной особенностью вируса.
У просто организованных и некоторых сложно организованных вирусов вирусная РНК в отсутствие белка мож^т вызвать инфекционный процесс. Впервые инфекционная активность РНК вируса табачной мозаики была продемон-^ стрирована X. Френкель-Конратом и соавт. в . и А. Гирером и Г. Шраммом в . Впоследствии положение об инфекционной активности РНК было перенесено на все РНК-содержащие вирусы, однако долголетние усилия доказать это для таких вирусов, как вирусы гриппа, парамиксовирусы, рабдовирусы (так называемые минус-нитевые вирусы), оказались бесплодными: у этих вирусов инфекционной структурой являются не РНК, а комплекс РНК с внутренними белками. Таким образом, геномная РНК может обладать инфекционной активностью в зависимости от своей структуры.
Структура вирусных РНК чрезвычайно разнообразна. У вирусов обнаружены однонитчатые и двунитчатые, линейные, фрагментированные и кольцевые РНК (см. табл. 2). РНК-геном в основном является гаплоидным, Ж) геном ретровирусов — диплоидный, т. е. состоит из двух идентичных молекул РНК.
Однонитчатые РНК. Молекулы однонитчатых вирусных РНК существуют в форме одиночной полинуклеотидной цепи со спирализованными ДНК-подобными участками. При этом некомплементарные нуклеотиды, разделяющие комплементарные участки, могут выводиться из состава спирализованных участков в форме различных «петель» и «выступов» (рис. 2). Суммарный процент спирализации вирусных РНК не обнаруживает каких-либо особенностей по сравнению с таковыми у клеточных РНК.
Вирусы, содержащие однонитчатые РНК, делятся на две группы. У вирусов первой группы вирусный геном обладает функциями информационной РНК, т. е. может непосредственно переносить закодированную в нем информацию на рибосомы. По предложению Д. Балтимора
(1971), РНК со свойствами информационной условно обозначена знаком «плюс» и в связи с этим вирусы, содержащие такие РНК (пикорнавирусы, тогавирусы, коро-навирусы, ретровирусы), обозначены как «плюс-нитевые» вирусы, или вирусы с позитивным геномом.
Вторая группа РНК-содержащих вирусов содержит геном в виде однонитчатой РНК, которая сама не обладает функциями иРНК. В этом случае функцию иРНК выполняет РНК, комплементарная геному. Синтез этой РНК (транскрипция) осуществляется в зараженной клетке на матрице геномной РНК с помощью вирусспецифиче-ского фермента — транскриптазы. В составе «минус-ните-вых» вирусов обязательно присутствие собственного фермента, осуществляющего транскрипцию геномной РНК и синтез иРНК, так как аналога такого фермента в клетках нет. Геном этих вирусов условно обозначают как «минуса-РНК, а вирусы этой группы как «минус-нитевые» вирусы, или вирусы с негативным геномом. К этим вирусам относятся ортомиксовирусы, парамиксовирусы, буньявирусы, рабдовирусы. РНК этих вирусов не способна вызвать инфекционный процесс.
В соответствии с разными свойствами вирусных РНК между двумя группами вирусов есть и структурные различия. Поскольку РНК «плюс-нитевых» вирусов выполняет функцию иРНК, она имеет специфические структурные особенности, характерные для 5'- и З'-концов этих РНК.
где т70 представляет собой 7-метилгуанин, присоединенный через пирофосфатную связь к гуаниловому нуклео-тиду, сахарный остаток которого также метилирован по второму углеродному атому. На З'-конце информационных РНК имеются поли (А), количество которых достигает 200 и выше. Эти модификации концов иРНК, осуществляемые после синтеза полинуклеотидной цепи, имеют существенное значение для функции иРНК: «шапочка» нужна для специфического узнавания иРНК рибосомами, функции поли (А) менее точно определены и, по-видимому, заключаются в придании стабильности молекулам иРНК.
Такими же модифицированными концами обладают геномные РНК «плюс-нитевых» вирусов. Исключение составляет 5'-конец геномной РНК вируса полиомиелита, которая не содержит «шапочку», и вместо нее имеет на 5'-конце ковалентно присоединенный к остатку урацила низкомолекулярный терминальный белок. Геномные РНК «минус-нитевых» вирусов не имеют ни «шапочки», ни поли (А); модифицированные концы характерны для иРНК этих вирусов, синтезирующихся в клетке на матрице ви-рионной РНК и комплементарных ей. Геномная РНК , ретровирусов, хотя и является «плюс-нитевой», однако не содержит «шапочку»; эту структуру содержит гомологичная РНК, синтезируемая на матрице интегрированной про-вирусной ДНК.
Существуют вирусы, содержащие как «плюс-нитевые», так и «минус-нитевые» РНК гены (амбисенс-вирусы). К ним относятся аренавирусы.
В основном однонитчатые РНК являются линейными молекулами, однако РНК-фрагменты буньявирусов обнаружены в виде кольцевой формы. Кольцевая форма возникает за счет образования водородных связей между концами молекул.
Двунитчатые РНК. Этот необычный для клетки тип нуклеиновой кислоты, впервые обнаруженный у реовиру-сов, широко распространен среди вирусов животных, растений и бактерий. Вирусы, содержащие подобный геном, называют диплорнавирусы.
Общей особенностью диплорнавирусов является фраг-ментированное состояние генома. Так, геном реовирусов
состоит из 10 фрагментов, ротавирусов — из 11 фрагментов.
Размеры РНК ряда вирусов животных приведены в табл. 4. Как видно, молекулярная масса РНК варьирует в широких пределах.
КОМПОНЕНТЫ КЛЕТКИ-ХОЗЯИНА
В составе вирионов могут находиться компоненты клетки-хозяина. К таким компонентам могут относиться белки и даже целые клеточные структуры. Так, например, в составе ряда оболочечных вирусов может находиться белок цитоскелета актин, в составе паповавирусов содержатся клеточные гистоны. Ряд вирусов содержит клеточные ферменты, например протеинкиназы. В составе аренавирусов обнаружены рибосомы.
Клеточные компоненты могут включаться в вирион случайно или закономерно. В некоторых случаях они играют существенную роль в репродукции вируса, как, например, гистоны в репродукции паповавирусов.
ОСНОВЫ КЛАССИФИКАЦИИ
Современная классификация вирусов является универсальной для вирусов позвоночных, беспозвоночных, растений и простейших. Она основана на фундаментальных свойствах вирионов, из которых ведущими являются признаки, характеризующие нуклеиновую кислоту, мор-
фологию, стратегию генома и антигенные свойства. Фундаментальные свойства поставлены на первое место, поскольку вирусы со сходными антигенными свойствами обладают и сходным типом нуклеиновой кислоты, сходными морфологическими и биофизическими свойствами.
Важным признаком для классификации, который учитывается наряду со структурными признаками, является стратегия вирусного генома, под которой понимают используемый вирусом способ репродукции, обусловленный особенностями его генетического материала. Например, полярность вирусной РНК является основным критерием для группировки вирусов и при отсутствии общих антигенных свойств.
Антигенные и другие биологические свойства являются признаками, лежащими в основе формирования вида и имеющими значение в пределах рода.
В основу современной классификации положены следующие основные критерии.
1. Тип нуклеиновой кислоты (РНК или ДНК), ее структура (количество нитей).
2. Наличие липопротеидной оболочки.
3. Стратегия вирусного генома.
4. Размер и морфология вириона, тип симметрии, число капсомеров.
5. Феномены генетических, взаимодействий.
6. Круг восприимчивых хозяев.
7. Патогенность, в том числе патологические изменения в клетках и образование внутриклеточных включений.
8. Географическое распространение.
9. Способ передачи.
10. Антигенные свойства.
На основании перечисленных признаков вирусы делятся на семейства, подсемейства, роды и типы. Деление на семейства произведено по критериям, изложенным в пунктах 1 и 2, деление на роды и типы — на основании нижеперечисленных признаков. Схематически строение семейств вирионов, поражающих позвоночных, приведено на рис. 12. Дополнительно выделены еще 2 семейства: Серадпаушдае и ИауМгМае (выделенные из семейства То§ау1Пс1ае). Семейства вирусов животных и их таксономические признаки приведены в табл. 7 и 8.
Современная классификация вирусов человека и животных охватывает более 4/5 всех известных вирусов, которые распределены в 19 семейств, из них 7 — ДНК-содержащих и 12— РНК-содержащих вирусов.Липиды
Липиды обнаружены у сложно организованных вирусов и в основном находятся в составе липопротеиднои оболочки (суперкапсида), формируя ее липидной бислой, в который вставлены суперкапсидные белки.
Все сложно организованные РНК-содержащие вирусы имеют в своем составе значительное количество липидов (от 15 до 35% от сухого веса). Из ДНК-содержащих вирусов липиды содержат вирусы оспы, герпеса и гепатита В (табл. 5). Примерно 50—60% липидов в составе вирусов представлено фосфолипидами, 20—30% составляет холестерин.
Лигшдный компонент стабилизирует структуру вирусной частицы. Экстракция липидов органическими растворителями, обработка вирусной частицы детергентами или липазами приводит к деградации вирусной частицы и потере инфекционной активности.
Вирусы, содержащие липопротеидную мембрану, формируются путем почкования на плазматической мембране клеток (или на мембранах эндоплазматической сети с выходом во внутриклеточные вакуоли). Поэтому липо-протеидная оболочка этих вирусов представляет собой мембрану клетки-хозяина, модифицированную за счет наличия на ее наружной поверхности вирусных супер-капсидных белков. Из этого следует, что состав липидов почкующихся вирусов близок к составу липидов клетки-
хозяина. К почкующимся вирусам относятся крупныеРНК-содержащие вирусы: ортомиксовирусы, парамиксовирусы, рабдовирусы, тогавирусы, ретровирусы, буньявирусы, аренавирусы, коронавирусы. ^
В связи с клеточным происхождением липидов общий состав липидной фракции и содержание ее отдельных компонентов у одного и того же вируса могут существенно различаться в зависимости от клетки-хозяина, где происходила репродукция вируса. Наоборот, если разные почкующиеся вирусы репродуцировались в одних и тех же клетках, их липиды оказываются более или менее сходными.
У вирусов оспы и гепатита В липиды имеют иное происхождение, так как эти вирусы не почкуются через плазматическую мембрану. У вирусов оспы липиды не образуют дифференцированной оболочки. Обработка вируса осповакцины эфиром не приводит к потере инфекционной активности или каким-либо структурным изменениям вириона. Липиды вируса гепатита В и его НВз-антигена образуются путем инвагинации мембран эндоплазматической сети. Вирус герпеса формируется путем почкования через ядерную оболочку, поэтому в его составе есть липиды ядерной оболочки.
Мое женское здоровье © 2012-2017 Все права защищены. Копирование материалов разрешено при условии установки активной ссылки на "http://mywomanhealth.ru/". Мое женское здоровье