Вирусология » Мое женское здоровье
Главная Стоматология Вирусология Хирургия Генетика Диетология Гинекология Гомеопатия Иммунология Гематология Аллергология Венерология
Логин:  
Пароль:
Диеты секс Фитнес Роды питание аборт тело Кожа Глаза Макияж Похудение Климакс Лекарства Волосы Мужчины
Интересное на сайте
ПИТАНИЕ И ДИЕТЫ
Греческий салат с креветками

Греческий салат с креветками

Как часто вы балуете себя чем-то вкусненьким? Если вам надоели уже сладости и бутерброды с красной икрой в качестве лакомств, удивите себя и своих гостей вкусным и оригинальным салатом. Салаты никогда не будут лишними на столе, будь то семейный ужин
23.12.16

Партнеры

Разные группы вирусов обладают неодинаковой устой­чивостью во внешней среде. Наименее устойчивыми явля­ются вирусы, имеющие липопротеидные оболочки, на­иболее устойчивыми — изометрические вирусы. Так, на­пример, ортомиксовирусы и парамиксовирусы инактиви-

руются на поверхностях в течение нескольких часов, тогда как вирусы полиомиелита, аденовирусы, реовирусы сохраняют инфекционную активность в течение несколь­ких дней.

Однако из этого общего правила имеются и исклю­чения. Так, вирус оспы устойчив к высыханию и сохраняется в экскретах в течение многих недель и месяцев. Вирус гепатита В устойчив к действию неблаго­приятных внешних факторов и сохраняет свою активность в сыворотке даже при кратковременном кипячении.

Чувствительность вирусов к ультрафиолетовому и рентгеновскому облучению зависит преимущественно от размеров их генома. Поэтому, например, вирус оспо-вакцины (молекулярная масса генома около 2 • 108) инактивируется при. рентгеновском облучении около 5 • Ю4 рад, в то время как мелкий вирус папилломы (молекулярная масса генома 3* Ю6) для инактивации требует облучения 4 • 105 рад.

Чувствительность вирусов к инактивации формаль­дегидом и другими химическими веществами, инакти-вирующими генетический материал, зависит от многих условий, среди которых следует назвать плотность упа­ковки нуклеиновой кислоты в белковый футляр, размеры генома, наличие или отсутствие внешних оболочек и т. п. Вирусы, имеющие липопротеидные оболочки, чувствитель­ны к эфиру, хлороформу и детергентам, в то время как просто устроенные изометрические и палочковидные вирусы устойчивы к их действию.

Наконец, важной особенностью вирусов является чувствительность к рН. Есть вирусы, устойчивые к кислым значениям рН (2,2—3,0), например вирусы, вызывающие кишечные инфекции и проникающие в организм алимен­тарным путем. Однако большинство вирусов инактиви­руется при кислых и щелочных значениях рН.



Со времени открытия вирусов по настоящее время представления о природе вирусов претерпели значительные изменения.

Д. И. Ивановский и другие исследователи того времени подчеркивали два свойства вирусов, позволившие выделить их из общей массы микроорганизмов: фильтруемость и неспособность размножаться на всех искусственных пи­тательных средах. Позже выяснилось, что эти свойства не абсолютны,   так  как   были  обнаружены   фильтрующиеся

(Ь) формы бактерий и микоплазмы, растущие на искус­ственных питательных средах, по размерам приближаю­щиеся к наиболее крупным вирусам (вирусы оспы чело­века и животных).

Внутриклеточный паразитизм вирусов также оказался не абсолютным критерием, отграничивающим их от ос­тальных микроорганизмов. Внутриклеточными паразитами являются не только вирусы, но и некоторые бактерии (го­нококки, менингококки) и простейшие (малярийный плазмодий). С развитием знаний о вирусах были найдены более надежные критерии, например существование у вирусов только одной из двух нуклеиновых кислот, в то время как у всех других микроорганизмов имеются обе нуклеиновые кислоты — дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК).

Другим уникальным свойством вирусов является отсут-^" ствие у них собственных белок-синтезирующих систем. Синтез вирусных белков осуществляется белок-синтези-рующим аппаратом клетки — клеточными рибосомами, ко­торые связываются с вирусными иРНК. Вирусы вводят в клетку лишь свою генетическую информацию, которая успешно конкурирует с клеточной информацией, несмотря на ничтожно малые размеры вирусных геномов (на 5—6 порядков меньших по молекулярным массам, чем геном эукариотической клетки). Поэтому и уровень паразитизма у вирусов иной, чем у бактерий Или простейших: в отличие от внутриклеточного паразитизма последних паразитизм вирусов определяется как генетический паразитизм, а ви­русы рассматриваются как генетические паразиты. Ярким примером генетического паразитизма является способность ряда вирусов интегрировать (объединяться) с клеточным геномом. В этом случае вирусные гены превращаются в группу клеточных генов и обозначаются как провирус. Стадия интеграции, помимо умеренных ДНК-содержащих фагов, характерна для онкогенных ДНК-содержащих вирусов и вируса гепатита В. Эта стадия обязательна для большой группы РНК-содержащих вирусов — ретро-вирусов.

Однако и в том случае, когда интеграции не происхо­дит и вирусный геном находится в автономном состоя­нии, возникновение инфекции обусловлено конкуренцией вирусного и клеточного геномов.

К уникальным свойствам вируса относится его способ размножения, который резко отличается от способов раз­множения  всех  других  клеток и  организмов   (бинарное

деление, почкование, образование спор). Вирусы не растут, и их размножение обозначается как дисъюнктивная (разобщенная) репродукция, что подчеркивает разобщен­ность в пространстве (на территории клетки) и времени синтеза вирусных компонентов (нуклеиновых кислот и белков) с последующей сборкой и формированием вирио-нов.

В связи с вышеизложенным не раз возникали дискус­сии по поводу того, что же такое вирусы — живое или не живое, организмы или не организмы. Безусловно, вирусы обладают основными свойствами всех других форм жиз­ни — способностью размножаться, наследственностью, изменчивостью, приспособляемостью к условиям внешней среды; они занимают определенную экологическую нишу, на них распространяются законы эволюции органического мира на земле. Поэтому к середине 40-х годов сложи­лось представление о вирусах как о наиболее простых микроорганизмах. Логическим развитием этих взглядов было введение термина «вирион», обозначавшего внекле­точный вирусный индивидуум. Однако с развитием иссле­дований по молекулярной биологии вирусов стали накап­ливаться факты, противоречащие представлению о виру­сах как организмах.

Отсутствие собственных белок-синтезирующих систем, дисъюнктивный способ репродукции, интеграция с клеточ­ным геномом, существование вирусов сателлитов и дефект­ных вирусов, феноменов множественной реактивации и комплементации — все это мало укладывается в представ­ление о вирусах как организмах. Представление это еще более теряет смысл, когда мы обратимся к вирусоподоб­ным структурам — плазмидам, вироидам и агентам типа возбудителя скрепи.

Плазмиды (другие названия — эписомы, эпивирусы) представляют двунитчатые кольцевые ДНК с молекуляр­ной массой в несколько миллионов, реплицируемые клет­кой. Они вначале были обнаружены у прокариотов, и с их существованием связаны разные свойства бактерий, например устойчивость к антибиотикам. Поскольку плаз­миды обычно не связаны с бактериальной хромосомой (хотя многие из них способны к интеграции), их считают экстрахромосомными факторами наследственности.

Плазмиды были обнаружены и у эукариотов (дрожжей

. и других грибов),  более того,  обычные вирусы  высших

животных также могут существовать в виде плазмид, т. е.

кольцевых ДНК, лишенных собственных белков и репли-

цируемых клеточными ферментами синтеза ДНК. В част­ности, в виде плазмид могут существовать вирусы папил­ломы коров, обезьяний вирус 40 (8У40). При персистенции вируса герпеса в культуре клеток могут образовываться плазмиды — кольцевые ДНК, составляющие лишь часть генома этого вируса.

К вирусам примыкают вироиды — агенты, открытые Т. О. Дайнером в ., вызывающие заболевания неко­торых растений и способные передаваться как обычные инфекционные вирусы. При их изучении оказалось, что это сравнительно небольшие по размерам молекулы коль­цевой суперспирализованной РНК, состоящие из немно­гих, 300—400 нуклеотидов. Механизм репликации вирои-дов не вполне ясен.

Наконец, следует упомянуть об агенте скрепи — воз­будителе подострой трансмиссивной губкообразной энце­фалопатии овец. Вероятно, сходные агенты вызывают и другие формы губкообразных энцефалопатии животных и человека, в основе которых лежит прогрессирующее разрушение нервных клеток, в результате чего мозг при­обретает губчатую (спонгиоформную) структуру. Агент скрепи имеет белковую природу и даже получил специ­альное название — прион (от слов рго1ешасеош шгесйош; рагйс1е — белковая инфекционная частица). Предполага­ется, что этот белок является одновременно и индуктором и продуктом какого-то клеточного гена, ставшего авто­номным и ускользнувшего от регуляции («взбесившийся ген»).

Все вирусы, включая сателлиты и дефектные вирусы, плазмиды, вироиды и даже агенты скрепи (их гены), име­ют нечто общее, их объединяющее. Все они являются автономными генетическими структурами, способными функционировать и репродуцироваться в восприимчивых к ним клетках животных, растений, простейших, грибов, бактерий. По-видимому, это наиболее общее определение, позволяющее очертить царство вирусов. На основании сформулированного определения вирусы, не будучи орга­низмами, тем не менее являются своеобразной формой жизни и поэтому подчиняются законам эволюции орга­нического мира на земле.

Статья подготовлена специально для сайта http://mywomanhealth.ru/


Углеводный компонент вирусов находится в составе гликопротеидов. Наличие гликопротеидов у вирусов и их процентное содержание показано в табл. 5. Количество Сахаров в составе гликопротеидов может быть достаточно большим, достигая 10—13% от массы вириона. Химичес­кая специфичность их полностью определяется клеточ­ными ферментами, обеспечивающими перенос и присоеди-нение соответствующих сахарных остатков. Обычными сахарными остатками, обнаруживаемыми в вирусных белках, являются фруктоза, сахароза, манноза, галактоза, нейраминовая кислота, глюкозамин. Таким образом, подобно липидам, углеводный компонент определяется клеткой-хозяином, благодаря чему один и тот же вирус, Взращенный в клетках разных видов, может значительно различаться по составу Сахаров в зависимости от спе­цифичности клеточных гликозилтрансфераз.

Углеводный компонент гликопротеидов играет существенную роль в структуре и функции белка. Он Является каркасом для локальных участков гликопротеида,

 

обеспечивая сохранение конформации белковой молекулы, и обусловливает защиту молекулы от протеаз. Возможны и другие функции углеводов, пока достоверно не уста­новленные.

Статья подготовлена специально для сайта http://mywomanhealth.ru/


История вирусологии довольно необычна. Первая вак­цина для предупреждения вирусной инфекции — оспы была предложена английским врачом Э. Дженнером в ., почти за сто лет до открытия вирусов, вторая вакцина — антирабическая была предложена основателем микробиологии Л. Пастером в .— за семь лет до открытия вирусов.

Честь открытия вирусов принадлежит нашему сооте­чественнику Д. И. Ивановскому, который впервые в . доказал существование нового типа возбудителя болезней на примере мозаичной болезни табака. Будучи студентом Петербургского университета, он выезжал на Украину и в Бессарабию для изучения причин болезни табака, а затем, после окончания университета, продолжал исследования в Никитском ботаническом саду под Ялтой. В содержимом пораженного листа он не обнаружил бактерий, однако сок больного растения вызывал поражения здоровых листьев. Д. И. Ивановский профильтровал сок больного растения через свечу Шамберлана, поры которой задерживали мельчайшие бактерии. В результате он обнаружил, что воз­будитель проходит даже через такие поры, так как фильт­рат продолжал вызывать заболевание листьев табака. Культивирование его на искусственных питательных сре­дах оказалось невозможным. Д. И. -Ивановский приходит к выводу, что возбудитель имеет необычную природу: он фильтруется через бактериальные фильтры и не способен расти на искусственных питательных средах. Он назвал новый тип возбудителя «фильтрующиеся бактерии».

Опыты Д. И. Ивановского в . повторил гол­ландский ученый М. В. Бейеринк, придя, однако, к вы­воду, что возбудитель табачной мозаики — жидкий живой контагий. Д. И. Ивановский с этим выводом не согла­сился. К этому времени были опубликованы работы Ф. Леффлера и П. Фроша, показавших, что возбудитель ящура также проходит через бактериальные фильтры. Д. И. Ивановский, анализируя эти данные, пришел к вы-

 

 

воду, что агенты ящура и табачной мозаики принци­пиально сходны. В споре с М. В. Бейеринком прав ока­зался Д. И. Ивановский. Опыты Д. И. Иванов­ского были положены в ос­нову его диссертации «О двух болезнях табака», представленной в ., и изложены в книге того же названия, вышедшей в . Этот год и считает­ся годом открытия вирусов. Д. И. Ивановский от­крыл вирус растений. Ф. Леффлер и П. Фрош открыли вирус, поражаю­щий животных. Наконец, в . Ф. д'Эррель открыл бактериофаг — вирус, по­ражающий бактерии. Та­ким образом, вирусы вызывают болезни растений, живот­ных, бактерий.

Слово «вирус» означает яд, оно применялось еще Л. Пастером для обозначения заразного начала. Позже стали применять название «ультравирус» или «фильтрую­щий вирус», затем определение отбросили и укоренился термин «вирус».

Статья подготовлена специально для сайта http://mywomanhealth.ru/


Вирусы обычно рассматриваются как паразиты — воз­будители инфекционных болезней, наносящих вред челове­ку, животным, растениям. Однако такой подход нельзя признать правильным. Была высказана гипотеза [Жда­нов В. М., 1974], согласно которой вирусы являются важ­ным фактором эволюции органического мира. Преодоле­вая видовые барьеры, вирусы могут переносить отдельные гены или группы генов, а интеграция вирусной ДНК с хромосомами клеток может приводить к тому, что вирус­ные гены становятся клеточными генами, выполняющими важные функции.

Поскольку вирусы, будучи особыми формами жизни, не являются микроорганизмами, то и вирусология является не разделом микробиологии, а самостоятельной научной дисциплиной, имеющей свой объект изучения и свои методы исследования.

Статья подготовлена специально для сайта http://mywomanhealth.ru/


Проникшие в клетку вирусные частицы должны раздеть­ся для того, чтобы вызвать инфекционный процесс. Смысл раздевания заключается в удалении вирусных защитных оболочек, которые препятствуют экспрессии вирусного генома. В результате раздевания освобождается внутрен­ний компонент вируса, который способен вызвать инфек­ционный процесс. Раздевание сопровождается рядом характерных особенностей: в результате распада вирусной частицы исчезает инфекционная активность, в ряде слу­чаев появляется чувствительность к нуклеазам, возникает устойчивость к нейтрализующему действию антител, теряется фоточувствительность при использовании ряда препаратов.

Конечными продуктами раздевания являются сердце­вины,   нуклеокапсиды   или   нуклеиновые   кислоты.   Для

ряда вирусов было показано, что продуктом раздевания являются не голые нуклеиновые кислоты, а нуклеиновые кислоты, связанные с внутренним вирусным белком. На­пример, конечным продуктом раздевания пикорнавирусов является РНК, ковалентно связанная с белком УРг, конеч­ным продуктом раздевания аденовирусов, вируса полиомы и 8У40 является ДНК, ковалентно связанная с одним из внутренних вирусных белков.

В ряде случаев способность вирусов вызвать инфек­ционный процесс определяется возможностью их разде­вания в клетке данной системы. Тем самым эта ста­дия является одной из стадий, лимитирующих инфек­цию.

Раздевание ряда вирусов происходит в специализи­рованных участках внутри клетки (лизосомах, структурах аппарата Гольджи, околоядерном пространстве, ядерных порах на ядерной мембране). При слиянии вирусной и клеточной мембран проникновение в клетку сочетается с раздеванием.

Раздевание и внутриклеточный транспорт являются взаимосвязанными процессами: при нарушении правиль­ного внутриклеточного транспорта к местам раздевания вирусная частица попадает в лизосому и разрушается лизосомальными ферментами.

Промежуточные формы при раздевании. Раздевание вирусной частицы ^осуществляется постепенно в результате серии последовательных реакций. Например, в процессе раздевания пикорнавирусы проходят ряд стадий с образо­ванием промежуточных субвирусных частиц с размерами от 156 8 до 12 8. Раздевание вирусов ЕСНО имеет сле­дующие стадии: вирионы (156 8) -*- А-частицы (130 8) -*■ -*■ РНП и пустые капсиды (80 8) -*■ РНК с терминальным белком (12 8). Раздевание аденовирусов происходит в цитоплазме и ядерных порах и имеет по крайней мере 3 стадии: 1) образование субвирусных частиц с большей плотностью, чем вирионы; 2) образование сердцевин, в которых отсутствует 3 вирусных белка; 3) образование ДНК-белкового комплекса, в котором ДНК ковалентно соединена с терминальным белком. Вирус полиомы в про­цессе раздевания теряет наружные белки и превращается в субвирусную частицу с коэффициентом седиментации 48 8. Затем частицы связываются с ядерными белками (гистонами) и формируется 190 8 комплекс (с коэффи­циентом седиментации 190 8), способный вызвать инфек­ционный процесс. Вирус гриппа вначале теряет липопро-

теидную оболочку и превращается в субвирусную частицу, из которой после удаления М-белка освобождается нуклеокапсид.

Статья подготовлена специально для сайта http://mywomanhealth.ru/


БЕЛКИ

16.02.14 | Раздел: Вирусология

В зараженной клетке вирусный геном кодирует синтез двух групп белков: 1) структурных, которые входят в со­став вирусных частиц потомства, и 2) неструктурных, которые обслуживают процесс внутриклеточной репродук­ции вируса на разных его этапах, но в состав вирусных частиц не входят.

Структурные белки. Количество структурных белков в составе вирусной частицы варьирует в широких пределах в зависимости от сложности организации вириона. Наибо­лее просто организованный вирус табачной мозаики со­держит всего один небольшой белок с молекулярной массой 17—18- 103, некоторые фаги содержат 2—3 белка, просто организованные вирусы животных — 3—4 белка. Сложно устроенные вирусы, такие как вирусы оспы, содержат более 30 структурных белков.

Структурные белки делятся на 2 группы:

1)         капсидные белки, образующие капсид, т. е. футляр для нуклеиновой кислоты вируса (от лат. сарза — вме­стилище), и входящие в состав капсида геномные белки, и ферменты;

2)    суперкапсидные белки, входящие в состав суперкап-сида, т. е. наружной вирусной оболочки.

Поскольку суперкапсид называют также «пеплос» (от греч. рер1оз — покров, мантия), эти белки называют пепло-мерами.

Просто организованные вирусы, представляющие собой нуклеокапсид, содержат только капсидные белки. Сложно организованные вирусы содержат капсидные и суперкап-слдные белки.

Капсидные белки. Первоначальное представление о том, что капсидные белки являются всего лишь инерт­ной оболочкой для вирусной нуклеиновой кислоты, сложи­лось на основании изучения наиболее просто организо­ванного вируса табачной мозаики, частица которого со­стоит из одной молекулы РНК и одного типа белка, образующего чехол для РНК. Однако такое представление неправильно. Хотя основной функцией капсидных белков

является функция защиты вирусного генома от неблаго­приятных воздействий внешней среды, у многих вирусов в составе капсида есть белки и с другими функциями. Поэтому термин «капсид» далеко выходит за пределы представления о нем как о футляре или чехле для вирус­ной нуклеиновой кислоты.

В составе капсида некоторых вирусов (пикорнавирусы, паповавирусы, аденовирусы) содержатся белки, ковалент-но связанные с вирусным геномом (геномные белки). Эти белки являются терминальными, т. е. соединенными с концом вирусной нуклеиновой кислоты. Функции их неразрывно связаны с функциями генома и их регуля­цией.

У ряда сложно организованных вирусов в составе кап­сида имеются ферменты, осуществляющие транскрипцию и репликацию вирусного генома — РНК и ДНК (РНК-и ДНК-полимеразы), а также ферменты, модифицирую­щие концы иРНК. Если ферменты и геномные белки представлены единичными молекулами, то капсидные бел­ки представлены множественными молекулами. Эти белки и формируют капсидную оболочку, в которую у сложно организованных вирусов вставлены молекулы белков с дру­гими функциями.

Основным принципом строения капсидной оболочки вирусов является принцип субьединичности, т. е. построе­ние капсидной оболочки из субъединиц-капсомеров, обра­зованных идентичными полипептидными цепями. Пра­вильно построенные белковые субъединицы — капсомеры возникают благодаря способности вирусных капсидных белков к самосборке. Самосборка объясняется тем, что упорядоченная структура — капсид имеет наименьшую свободную энергию по сравнению с неупорядоченными белковыми молекулами. Сборка капсидной оболочки из субъединиц запрограммирована в первичной структуре белка и происходит самопроизвольно или при взаимо­действии с нуклеиновой кислотой.

Принцип субъединичности в строении вирусного капси­да является универсальным свойством капсидных белков и имеет огромное значение для вирусов. Благодаря этому свойству достигается огромная экономия генетического материала. Если бы капсидная оболочка была построена из разных белков, то на кодирование ее потребовалась бы основная часть генетической информации, заложенной в вирусном геноме. В действительности на кодирование, например,   одной   полипептидной   цепи   вируса   табачной

мозаики, расходуется менее 10% генома. Далее, в меха­низме самосборки заложена возможность контроля за полноценностью вирусных полипептидов: дефектные и чу­жеродные полипептидные цепи при таком способе сборки вирионов будут автоматически отбрасываться.

Описанная способность к самосборке в пробирке и в зараженной клетке характерна только для простых виру­сов. Сборка сложно организованных вирусов является го­раздо более сложным многоступенчатым процессом, хотя отдельные ее этапы, например формирование капсидов и нуклеокапсидов, также основаны на самосборке.

Суперкапсидные белки. Гликопротеиды. Суперкапсидные белки, или пепломеры, располагаются в липопротеидной оболочке (суперкапсиде или пеплосе) сложно устроенных вирусов. Они либо пронизывают насквозь липидный бислой как, например, гликопротеиды альфа-вирусов (вируса леса Семлики), либо не доходят до внутренней поверхности. Эти белки являются типичны­ми внутримембранными белками и имеют много общего с клеточными мембранными белками. Как и последние, суперкапсидные белки обычно гликозилированы. Углевод­ные цепочки прикреплены к молекуле полипептида в опре­деленных участках. Гликозилирование осуществляют кле­точные ферменты, поэтому один и тот же вирус, проду­цируемый разными видами клеток, может иметь разные у углеводные остатки: может варьировать как состав угле­водов, так и длина углеводной цепочки и место прикреп­ления ее к полипептидному остову.

У большинства вирусов гликопротеиды формируют «шипы» на поверхности вирусной частицы, длина которых достигает 7—10 им. Шипы представляют собой морфоло­гические субъединицы, построенные из нескольких моле­кул одного и того же белка. Вирусы гриппа имеют два типа шипов, построенных соответственно из гемагглютини-на и нейраминидазы. Парамиксовирусы также имеют два типа шипов, построенных соответственно из двух глико-протеидов (НИ и Р), рабдовирусы имеют только один гликопротеид и, соответственно, один тип шипов, а альфа-вирусы имеют два или три гликопротеида, формирующих один тип шипов.

Гликопротеиды являются амфипатическими молекула­ми: они состоят из наружной, гидрофильной части, кото­рая содержит на конце аминогруппу ДО -конец), и погру­женной в липидный бислой, гидрофобной части, которая содержит на погруженном конце гидроксильную группу

(С-конец). С-концом полипетид «заякоривается» в липид ном бислое. Есть, однако, и исключения из этого общего положения: нейраминидаза вируса гриппа взаимодействует с липидным бислоем не С-, а г4-концом.

Основной функцией гликопротеидов является взаимо­действие со специфическими рецепторами клеточной поверхности. Благодаря этим белкам осуществляется рас­познавание специфических клеточных рецепторов и прик­репление к ним вирусной частицы, т. е. адсорбция вируса на клетке. Поэтому гликопротеиды, выполняющие эту функцию, называют вирусными прикрепительными белка­ми.

Другой функцией гликопротеидов является участие в слиянии вирусной и клеточной мембран, т. е. в событии, ведущем к проникновению вирусных частиц в клетку. Ви­русные белки слияния ответственны за такие процессы, как гемолиз и слияние плазматических мембран соседних кле­ток, приводящие к образованию гигантских клеток, синци-тиев и симпластов.

«Адресная   функция»   вирусных   белков. Вирусы вызывают инфекционный процесс у относительно небольшого круга хозяев. Вирус должен «узнать» чувст­вительную клетку, которая сможет обеспечить продукцию полноценного вирусного потомства. Если бы вирус прони­кал в любую клетку, которая встретилась на его пути, это привело бы к исчезновению вирусов в результате деструк­ции "«родительской» вирусной частицы и отсутствия вирус­ного потомства. В процессе эволюции у вирусов выраба­тывалась так называемая адресная функция, т. е. поиск чувствительного хозяина среди бесконечного числа нечув­ствительных клеток. Эта функция реализуется путем на­личия специальных белков на поверхности вирусной ча­стицы,  которые узнают специфический рецептор на по­верхности чувствительной клетки.

Неструктурные белки. Неструктурные белки изучены гораздо хуже, чем структурные, поскольку их выделяют не из очищенных препаратов вирусов, а из зараженных клеток, и возникают трудности в их идентификации и очи­стке от клеточных белков.

К неструктурным белкам относятся:

1)           предшественники вирусных белков, которые отлича­ются от других неструктурных белков нестабильностью в зараженной клетке в результате быстрого нарезания на структурные белки;

2)     ферменты синтеза РНК и ДНК (РНК- и ДНК-26

полимеразы), обеспечивающие транскрипцию и реплика­цию вирусного генома;

3)           белки-регуляторы;

4)     ферменты,  модифицирующие вирусные  белки,  на­пример протеиназы и протеинкиназы.

Однако многие неструктурные белки при ряде вирус­ных   инфекций   еще   не   идентифицированы   и   функции их не  определены.  Типы  структурных  и  неструктурных белков просто и сложно устроенных вирусов и их функ-' ции показаны на схеме

Статья подготовлена специально для сайта http://mywomanhealth.ru/


По вопросу о происхождении вирусов высказывались разные предположения. Одни авторы считали, что вирусы являются результатом крайнего проявления регрессивной эволюции бактерий или других одноклеточных организ­мов. Гипотеза регрессивной эволюции не может объяснить разнообразия генетического материала у вирусов, некле­точной их организации, дисъюнктивного способа репро­дукции и отсутствия белок-синтезирующих систем. Поэ­тому в настоящее время эта гипотеза имеет скорее исто­рическое    значение    и    не    разделяется    большинством вирусологов.

Согласно второй гипотезе вирусы являются потомками древних, доклеточных форм жизни — протобионтов, пред­шествовавших появлению клеточных форм жизни, с ко­торых и началась биологическая эволюция. Эта гипотеза также не разделяется в настоящее время большинством вирусологов, так как она не объясняет тех же вопро­сов,   разрешить   которые   оказалась   бессильной   первая гипотеза.

Третья гипотеза предполагает, что вирусы произошли от генетических элементов клеток, ставших автономными, хотя не ясно, какие из этих элементов дали начало столь большому разнообразию генетического материала у виру­сов. Эта гипотеза, которую иронически назвали гипотезой «взбесившихся генов», находит наибольшее число сторон-' ников, однако не в том первоначальном виде, в каком она была высказана, так как и она не объясняет наличие у вирусов форм генетического материала (однонитчатая ДНК, двунитчатая РНК), отсутствующих в клетках,обра­зование   капсида,   существование  двух  форм  симметрии и т. п.

Вероятно, вирусы действительно являются дериватами генетических элементов клеток, но они возникали и эволю­ционировали вместе с возникновением и эволюцией клеточ­ных форм жизни. Природа как бы испробовала на вирусах все возможные формы генетического материала (разные виды РНК и ДНК), прежде чем окончательно остановила свой выбор на канонической его форме — двунитчатой ДНК, общей для всех клеточных форм организмов, начиная от бактерии и кончая человеком. Будучи, с одной стороны, автономными генетическими структурами, с дру­гой стороны, неспособными развиваться вне клеток, виру­сы на протяжении миллиардов лет биологической эволю­ции проделали настолько разнообразные пути развития, что^ отдельные их группы не имеют преемственной связи между собой. По-видимому, разные группы вирусов воз­никали в исторически разные времена из разных генетических элементов клеток и поэтому существующие в на­стоящее время разные группы вирусов имеют полифиле-тическое происхождение, т. е. не имеют единого общего предка. Тем не менее, 'универсальность генетического кода распространяется и на вирусы, свидетельствуя тем самым, что и они являются порождением органического мира земли.

Статья подготовлена специально для сайта http://mywomanhealth.ru/


Просто организованные вирусы представляют собой нуклеопротеиды или нуклеокапсиды и состоят из нуклеи­новой кислоты (РНК или ДНК) и нескольких кодируе­мых ею белков, формирующих вирусную оболочку вокруг нуклеиновой кислоты — капсид.

Сложно организованные вирусы содержат дополнитель­ные оболочки, белковые или липопротеидные, и имеют более сложный химический состав. Помимо нуклеиновой кислоты и белков, они содержат липиды в наружных обо­лочках и углеводы в составе белков' наружных оболочек (гликопротеидов). Обычно липиды и углеводы имеют кле­точное происхождение. В составе некоторых вирусов об­наруживаются также клеточные нуклеиновые кислоты и белки.

Клетки всех живых организмов содержат два вида нуклеиновой кисло­ты — ДНК и РНК. ДНК представляет собой дву-нитчатую молекулу, а РНК — однонитчатую. Двунитчатая ДНК — это клеточный геном, выпол­няющий функции хране­ния и репликации наслед­ственной информации. Однонитчатая РНК пред­ставлена 3 классами мо­лекул: 1) информацион­ные РНК (иРНК), обра­зующиеся в результате транскрипции генома и передающие заложенную в геноме информацию на белок-синтезирующий аппарат клетки; 2) рибо-сомальные РНК, являю­щиеся структурным эле­ментом рибосомы; 3) тРНК, доставляющие аминокислоты к белок-синтезирующему аппара­ту.

В отличие от клеток вирусы содержат лишь один вид нуклеиновой кислоты — либо РНК, либо ДНК. И та, и другая может быть храни­телем наследственной информации, выполняя таким обра­зом функции генома.

Вирусные нуклеиновые кислоты характеризуются пора­зительным разнообразием форм. Вирусный геном может быть представлен как однонитчатыми, так и двунитчатыми молекулами РНК и ДНК. ДНК может быть как линейной, так и кольцевой молекулой (табл. 1), РНК — как непре--рывной, так и фрагментированной и кольцевой молеку­лой.

Статья подготовлена специально для сайта http://mywomanhealth.ru/


Первые вирусологические лаборатории в СССР созданы в 30-е годы: в .— лаборатория по изучению вирусов растений в Украинском институте защиты растений, в .— отдел вирусов в Институте микробиологии АН СССР, а в . он был реорганизован в отдел вирусов растений, которым в течение многих лет руко­водил В. Л. Рыжков. В . организована Централь­ная вирусологическая лаборатория Наркомздрава РСФСР в Москве, которой заведовал Л. А. Зильбер, а в . эта лаборатория реорганизована в отдел вирусов Всесоюз­ного института экспериментальной медицины, его руко­водителем был назначен А. А. Смородинцев. В . на базе отдела вирусов создан Институт вирусологии АМН СССР, которому в . присвоено имя Д. И. Ива­новского.

В течение 50-х и 60-х годов созданы научные и про­изводственные вирусологические учреждения в нашей стране: Институт полиомиелита и вирусных энцефалитов АМН СССР, Институт вирусных препаратов Минис­терства здравоохранения СССР, Киевский институт ин­фекционных болезней, Всесоюзный научно-исследова­тельский институт гриппа Министерства здравоохранения СССР в Ленинграде и ряд других.

Важную роль в подготовке кадров вирусологов сыграла организация в . кафедры вирусологии в Централь­ном институте усовершенствования врачей МЗ СССР. Кафедры вирусологии были созданы на биологических факультетах Московского и Киевского университетов.

Статья подготовлена специально для сайта http://mywomanhealth.ru/




Мое женское здоровье © 2012-2017 Все права защищены. Копирование материалов разрешено при условии установки активной ссылки на "http://mywomanhealth.ru/". Мое женское здоровье


Яндекс.Метрика